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Principle of state-feedabck control

We are going to study the design of control-laws for systems described by

state-space representations

continuous time discrete time{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

{
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

State-feedback control
This method consists in

I designing an input-signal u

I using state-variables xi .
These variables are assumed to be all measured (we have knowledge of

their values at any time-instant).

In the next chapter, we will see how to estimate these values if they

cannot be measured.
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Principle of state-feedabck control
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A, B, C

System

I e(t) : exogeneous reference input-signal

I u(t) = e(t)− L · x(t) : control-input applied to the system.

Behavior of the system is taken into account through L · x(t).
I L is the feedback matrix to be found.
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Pole-placement

State-equation with the feedback can be written

ẋ(t) = Ax(t) + B (e(t)− Lx(t)) = (A− BL)x(t) + Be(t)

Principle of pole-placement

Choosing feedback-matrix L in order to impose the poles for the sytem

with the feedback, that is the eigenvalues of (A− BL) or the roots of

P(s) = |sI− A+ BL|.

Pole-placement equation

Let Pdes(s) be a desired characteristic polynomial for the system with the

feedback, it is necessary to solve

|sI− A+ BL| = Pdes(s)
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ẋ(t) = Ax(t) + B (e(t)− Lx(t)) = (A− BL)x(t) + Be(t)

Principle of pole-placement

Choosing feedback-matrix L in order to impose the poles for the sytem

with the feedback, that is the eigenvalues of (A− BL) or the roots of

P(s) = |sI− A+ BL|.

Pole-placement equation

Let Pdes(s) be a desired characteristic polynomial for the system with the

feedback, it is necessary to solve

|sI− A+ BL| = Pdes(s)

Control theory: state-space approach for linear systems 2 janvier 2022 4 / 18



Pole-placement

State-equation with the feedback can be written
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Pole-placement control design

Software-aided solution
Scilab's function ppol() solves pole-placement equation

Formal solution (for the SISO case)

I Reminder :

sn + γn−1s
n−1 + . . .+ γ0 = sn + δn−1s

n−1 + . . .+ δ0

if, and only if,

γ0 = δ0, γ1 = δ1, . . . , γn−1 = δn−1

I It is then su�cient to identify coe�cients of L in :

|sI− A+ BL| = Pdes(s)
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Choice of the poles

The coe�cients chosen into Pdes(s) transcribe the poles which have been

chosen for the system once the feedback is applied. In other words, the

feedback makes it possible to impose Pdes(s) as the denominator of the

transfer function for the controlled system.

First-order case
The denominator of the transfer function is 1+ Ts, or equivalently
1/T + s, and the choice for α0 in polynomial Pdes(s) = s + α0 imposes a

desired value for time-constant T (describing "quickness" of the system).
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Choice of the poles

Second-order case
Denominator of the transfer function :1+ 2ξ

ωn
s + 1

ω2
n
s2 or ω2

n + 2ξωns + s2.

The choices for α0 and α1 into Pdes(s) = s2 + α1s + α0 impose desired

values for ωn and ξ.

I Feedback has a "physical" meaning only if l0 and l1 are some real

numbers : α0 and α1 must be chosen accordingly (roots of Pdes(s)
can be conjugate complex numbers).

I To make the system stable, ξ must be strictly positive (⇔ roots of

Pdes(s) must all have a strictly negative real part). If under-damped

second-order system (0 < ξ < 1), then ξ determines the range of

overshoot(s).

I For a given value for ξ, the choice of the natural frequency makes it

possible to tune the "quickness" of the system (for instance, by

imposing the 5% response-time).
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Example : container handling gantry crane

Reminder of previous results

State-space representation : ẋ(t) =

(
0 g
− 1

L 0

)
x(t) +

(
0
1
L

)
u(t)

y(t) =
(
1 0

)
x(t)

.

It has been shown that the system is unstable.

It is a second-order system with

• ξ = 0,

• ωn =
√

g
L .
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Example : container handling gantry crane

A state-feedback control is designed in order to place the poles of the system.

For instance, one can impose that the controlled system admits for characteristic
polynomial :

Pdes(s) = (s + 2)2

a) Its roots (double root −2) are then all with srictly negative real part, which
means that the system is stabilized thanks to the state-feedback.

b) This makes it possible to impose s2 + 4s + 4, or equivalently 1

4
s2 + s + 1 as

denominator of the transfer function. This imposes that ξ = 1 : step
response will be without overshoot.
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Example : container handling gantry crane

Finding matrix regulation L to obtain Pdes(s) as characteristic polynomial for the
controlled system.

1. We have :

sI− A+ BL =

(
s −g

1+l1
L s + l2

L

)
hence |sI− A+ BL| = s2 + s l2

L + g+l1g
L .

2. We want
|sI− A+ BL| = Pdes(s)

s2 + s l2
L + g+l1g

L = s2 + 4s + 4

3. Identi�cation of polynomial coe�cients leads to{
l1 = 4L

g − 1

l2 = 4L
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Steady state for the system equipped with the feedback

Steady state

I Behavior of the system once its state does not evolve anymore.

I Equivalently, behavior of the system when reference input e is

constant and when time (t or k) tends to in�nity.

Control theory: state-space approach for linear systems2 janvier 2022 11 / 18



Steady state for the system equipped with the feedback

Steady state

I Behavior of the system once its state does not evolve anymore.

I Equivalently, behavior of the system when reference input e is

constant and when time (t or k) tends to in�nity.

Control theory: state-space approach for linear systems2 janvier 2022 11 / 18



Steady state in the continuous-time case

I Let us denote

e = lim
t→∞

e(t), x = lim
t→∞

x(t), y = lim
t→∞

y(t)

I State-space representation of the system equipped with the feedback :{
0 = (A− BL)x + Be
y = Cx

I This leads to

y = −C (A− BL)−1Be
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Steady state in the discrete-time case

I A steady state is reached as soon as, for k > K , x(k + 1) = x(k) (K
is the starting-time of the steady state).

I {
x(k) = (A− BL)x(k) + Be(k)
y(k) = Cx(k)

I This leads to

y = C (I− A+ BL)−1Be

by denoting y and e the constant signals y(k) and u(k) during the

steady state.
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To obtain an unitary static gain

Static gain y/e of the system equipped with the feedback

−C(A− BL)−1B (continuous-time) C(I− A+ BL)−1B (discrete-time)

To obtain an unitary gain between e and output y , we can add a gain Kre

equal to the inverse to this static gain.
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Example : container handling gantry crane

The steady-state gain is −C (A− BL)−1B. We have

A− BL =

(
0 g
− 4

g −4

)
, hence (A− BL)−1 =

(
−1 − g

4
1

g 0

)
and

−C (A− BL)−1B =
g

4L
.

The additionnal gain is then Kre =
1

−C(A−BL)−1B = 4L
g .
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Adding an integral e�ect
We consider the system

ẋ(t) = Ax(t) + Bu(t) + p

where p is an unknown and constant disturbance vector, supposed to

represent an external disturbance that could not be taken into account in

the modelling.

A feedback controller with integral e�ect is of the form

u(t) = Li

∫ t

0
(e(t)− y(t))dt︸ ︷︷ ︸
integral e�ect

−
state feedback︷ ︸︸ ︷

Lx(t) .

Let's pose z(t) =
∫ t
0 (e(t)− y(t))dt ⇔ ż(t) = e(t)− y(t).
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Adding an integral e�ect (ctd)


ẋ(t) = Ax(t) + Bu(t) + p
ż(t) = e(t)− y(t)
u(t) = Liz(t)− Lx(t)

⇐⇒
{

ẋ(t) = (A− BL)x(t) + BLiz(t) + p
ż(t) = e(t)− y(t)

⇐⇒
(
ẋ(t)
ż(t)

)
=

(
A− BL BLi
−C 0

)(
x(t)
z(t)

)
+

(
p

e(t)

)
.

The evolution matrix of the looped system is always of the form A′ − B ′L′,
and the choice of L and Li is then also made by pole-placement.
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