Control theory: state-space approach for linear systems State-feedback control

2 janvier 2022

Control theory: state-space approach for linear systems 2 janvier 2022 1/18

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We are going to study the design of control-laws for systems described by state-space representations

continuous time

$$\begin{cases}
\dot{x}(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t)
\end{cases}
\begin{cases}
u(k+1) = Ax(k) + Bu(k) \\
y(k) = Cx(k)
\end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We are going to study the design of control-laws for systems described by state-space representations

continuous time $\begin{cases}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t)
\end{cases}
\begin{cases}
x(k+1) &= Ax(k) + Bu(k) \\
y(k) &= Cx(k)
\end{cases}$

State-feedback control

This method consists in

- designing an input-signal u
- using state-variables x_i.

These variables are assumed to be all measured (we have knowledge of their values at any time-instant).

We are going to study the design of control-laws for systems described by state-space representations

	continuous time				discrete time		
ſ	$\dot{x}(t)$	=	Ax(t) + Bu(t)	ſ	x(k+1)	=	Ax(k) + Bu(k)
ĺ	y(t)	=	$C_{X}(t)$	ĺ	y(k)	=	$C_{X}(k)$

State-feedback control

This method consists in

- designing an input-signal u
- using state-variables x_i.

These variables are assumed to be all measured (we have knowledge of their values at any time-instant).

In the next chapter, we will see how to *estimate* these values if they cannot be measured.

Control theory: state-space approach for linear systems 2 janvier 2022 3 / 18

-

e(t) : exogeneous reference input-signal

Control theory: state-space approach for linear systems 2 janvier 2022 3/18

- e(t) : exogeneous reference input-signal
- ► u(t) = e(t) L · x(t) : control-input applied to the system. Behavior of the system is taken into account through L · x(t).

- e(t) : exogeneous reference input-signal
- ► u(t) = e(t) L · x(t) : control-input applied to the system. Behavior of the system is taken into account through L · x(t).
- L is the feedback matrix to be found.

Pole-placement

State-equation with the feedback can be written

$$\dot{x}(t) = Ax(t) + B(e(t) - Lx(t)) = (A - BL)x(t) + Be(t)$$

Control theory: state-space approach for linear systems 2 janvier 2022 4 / 18

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆ ○へ⊙

Pole-placement

State-equation with the feedback can be written

$$\dot{x}(t) = Ax(t) + B(e(t) - Lx(t)) = (A - BL)x(t) + Be(t)$$

Principle of pole-placement

Choosing feedback-matrix L in order to impose the poles for the sytem with the feedback, that is the eigenvalues of (A - BL) or the roots of P(s) = |sI - A + BL|.

Pole-placement

State-equation with the feedback can be written

$$\dot{x}(t) = Ax(t) + B(e(t) - Lx(t)) = (A - BL)x(t) + Be(t)$$

Principle of pole-placement

Choosing feedback-matrix L in order to impose the poles for the sytem with the feedback, that is the eigenvalues of (A - BL) or the roots of P(s) = |sI - A + BL|.

Pole-placement equation

Let $P_{des}(s)$ be a desired characteristic polynomial for the system with the feedback, it is necessary to solve

$$|sI - A + BL| = P_{des}(s)$$

Pole-placement control design

Software-aided solution

Scilab's function ppol() solves pole-placement equation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Pole-placement control design

Software-aided solution

Scilab's function ppol() solves pole-placement equation

Formal solution (for the SISO case)

Reminder :

$$s^n + \gamma_{n-1}s^{n-1} + \ldots + \gamma_0 = s^n + \delta_{n-1}s^{n-1} + \ldots + \delta_0$$

if, and only if,

$$\gamma_0 = \delta_0, \ \gamma_1 = \delta_1, \ldots, \ \gamma_{n-1} = \delta_{n-1}$$

Pole-placement control design

Software-aided solution

Scilab's function ppol() solves pole-placement equation

Formal solution (for the SISO case)

Reminder :

$$s^n + \gamma_{n-1}s^{n-1} + \ldots + \gamma_0 = s^n + \delta_{n-1}s^{n-1} + \ldots + \delta_0$$

if, and only if,

$$\gamma_0 = \delta_0, \ \gamma_1 = \delta_1, \ldots, \ \gamma_{n-1} = \delta_{n-1}$$

It is then sufficient to identify coefficients of L in :

$$|sI - A + BL| = P_{des}(s)$$

Choice of the poles

The coefficients chosen into $P_{des}(s)$ transcribe the poles which have been chosen for the system once the feedback is applied. In other words, the feedback makes it possible to impose $P_{des}(s)$ as the denominator of the transfer function for the controlled system.

Choice of the poles

The coefficients chosen into $P_{des}(s)$ transcribe the poles which have been chosen for the system once the feedback is applied. In other words, the feedback makes it possible to impose $P_{des}(s)$ as the denominator of the transfer function for the controlled system.

First-order case

The denominator of the transfer function is 1 + Ts, or equivalently 1/T + s, and the choice for α_0 in polynomial $P_{des}(s) = s + \alpha_0$ imposes a desired value for time-constant T (describing "quickness" of the system).

Choice of the poles

Second-order case

Denominator of the transfer function $:1 + \frac{2\xi}{\omega_n}s + \frac{1}{\omega_n^2}s^2$ or $\omega_n^2 + 2\xi\omega_n s + s^2$. The choices for α_0 and α_1 into $P_{des}(s) = s^2 + \alpha_1 s + \alpha_0$ impose desired values for ω_n and ξ .

- Feedback has a "physical" meaning only if *l*₀ and *l*₁ are some real numbers : α0 and α1 must be chosen accordingly (roots of *P_{des}(s)* can be conjugate complex numbers).
- To make the system stable, ξ must be strictly positive (⇔ roots of P_{des}(s) must all have a strictly negative real part). If under-damped second-order system (0 < ξ < 1), then ξ determines the range of overshoot(s).</p>
- For a given value for ξ, the choice of the natural frequency makes it possible to tune the "quickness" of the system (for instance, by imposing the 5% response-time).

イロト イボト イヨト イヨト 一日

Reminder of previous results

State-space representation :

$$\begin{cases} \dot{x}(t) = \begin{pmatrix} 0 & g \\ -\frac{1}{L} & 0 \end{pmatrix} x(t) + \begin{pmatrix} 0 \\ \frac{1}{L} \end{pmatrix} u(t) \\ y(t) = \begin{pmatrix} 1 & 0 \end{pmatrix} x(t) \end{cases}$$

It has been shown that the system is unstable.

It is a second-order system with

•
$$\xi = 0$$
,
• $\omega_n = \sqrt{\frac{g}{L}}$.

A state-feedback control is designed in order to place the poles of the system.

For instance, one can impose that the controlled system admits for characteristic polynomial :

$$P_{des}(s) = (s+2)^2$$

A state-feedback control is designed in order to place the poles of the system.

For instance, one can impose that the controlled system admits for characteristic polynomial :

$$P_{des}(s) = (s+2)^2$$

a) Its roots (double root -2) are then all with srictly negative real part, which means that the system is stabilized thanks to the state-feedback.

A state-feedback control is designed in order to place the poles of the system.

For instance, one can impose that the controlled system admits for characteristic polynomial :

$$P_{des}(s) = (s+2)^2$$

- a) Its roots (double root -2) are then all with srictly negative real part, which means that the system is stabilized thanks to the state-feedback.
- b) This makes it possible to impose $s^2 + 4s + 4$, or equivalently $\frac{1}{4}s^2 + s + 1$ as denominator of the transfer function. This imposes that $\xi = 1$: step response will be without overshoot.

Finding matrix regulation L to obtain $P_{des}(s)$ as characteristic polynomial for the controlled system.

1. We have :

$$sI - A + BL = \begin{pmatrix} s & -g \\ \frac{1+l_1}{L} & s + \frac{l_2}{L} \end{pmatrix}$$
hence $|sI - A + BL| = s^2 + s\frac{l_2}{L} + \frac{g+l_1g}{L}$.

2. We want

$$\begin{aligned} |s| - A + BL| &= P_{des}(s) \\ s^2 + s\frac{l_2}{L} + \frac{g + l_1 g}{L} &= s^2 + 4s + 4 \end{aligned}$$

3. Identification of polynomial coefficients leads to

$$\begin{cases} l_1 = \frac{4L}{g} - 1\\ l_2 = 4L \end{cases}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Steady state for the system equipped with the feedback

Steady state

Behavior of the system once its state does not evolve anymore.

Steady state for the system equipped with the feedback

Steady state

- Behavior of the system once its state does not evolve anymore.
- Equivalently, behavior of the system when reference input e is constant and when time (t or k) tends to infinity.

Steady state in the continuous-time case

Let us denote

$$e = \lim_{t \to \infty} e(t), \quad x = \lim_{t \to \infty} x(t), \quad y = \lim_{t \to \infty} y(t)$$

Control theory: state-space approach for linear systems 2 janvier 2022 12 / 18

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Steady state in the continuous-time case

Let us denote

$$e = \lim_{t \to \infty} e(t), \quad x = \lim_{t \to \infty} x(t), \quad y = \lim_{t \to \infty} y(t)$$

State-space representation of the system equipped with the feedback :

$$\begin{cases} 0 = (A - BL)x + Be \\ y = Cx \end{cases}$$

Steady state in the continuous-time case

Let us denote

$$e = \lim_{t \to \infty} e(t), \quad x = \lim_{t \to \infty} x(t), \quad y = \lim_{t \to \infty} y(t)$$

State-space representation of the system equipped with the feedback :

$$\begin{cases} 0 = (A - BL)x + Be \\ y = Cx \end{cases}$$

This leads to

$$y = -C(A - BL)^{-1}Be$$

Control theory: state-space approach for linear systems 2 janvier 2022 12 / 18

Steady state in the discrete-time case

A steady state is reached as soon as, for k > K, x(k + 1) = x(k) (K is the starting-time of the steady state).

Steady state in the discrete-time case

A steady state is reached as soon as, for k > K, x(k + 1) = x(k) (K is the starting-time of the steady state).

$$\begin{cases} x(k) = (A - BL)x(k) + Be(k) \\ y(k) = Cx(k) \end{cases}$$

イロト イボト イヨト イヨト 一日

Steady state in the discrete-time case

A steady state is reached as soon as, for k > K, x(k + 1) = x(k) (K is the starting-time of the steady state).

$$\begin{cases} x(k) = (A - BL)x(k) + Be(k) \\ y(k) = Cx(k) \end{cases}$$

This leads to

$$y = C(I - A + BL)^{-1}Be$$

by denoting y and e the constant signals y(k) and u(k) during the steady state.

To obtain an unitary static gain Static gain y/e of the system equipped with the feedback $-C(A - BL)^{-1}B$ (continuous-time) $C(I - A + BL)^{-1}B$ (discrete-time)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

To obtain an unitary static gain Static gain y/e of the system equipped with the feedback $-C(A - BL)^{-1}B$ (continuous-time) $C(I - A + BL)^{-1}B$ (discrete-time)

To obtain an unitary gain between e and output y, we can add a gain K_{re} equal to the inverse to this static gain.

Control theory: state-space approach for linear systems 2 janvier 2022 14 / 18

The steady-state gain is $-C(A - BL)^{-1}B$. We have

$$A - BL = \begin{pmatrix} 0 & g \\ -\frac{4}{g} & -4 \end{pmatrix}$$
, hence $(A - BL)^{-1} = \begin{pmatrix} -1 & -\frac{g}{4} \\ \frac{1}{g} & 0 \end{pmatrix}$

and

$$-C(A-BL)^{-1}B=\frac{g}{4L}.$$

The additionnal gain is then $K_{re} = \frac{1}{-C(A-BL)^{-1}B} = \frac{4L}{g}$.

Adding an integral effect

We consider the system

$$\dot{x}(t) = Ax(t) + Bu(t) + p$$

where p is an unknown and constant disturbance vector, supposed to represent an external disturbance that could not be taken into account in the modelling.

Adding an integral effect

We consider the system

$$\dot{x}(t) = Ax(t) + Bu(t) + p$$

where p is an unknown and constant disturbance vector, supposed to represent an external disturbance that could not be taken into account in the modelling.

A feedback controller with integral effect is of the form

$$u(t) = \underbrace{L_i \int_0^t (e(t) - y(t)) dt}_{\text{integral effect}} - \underbrace{L_x(t)}_{\text{state feedback}}$$

Adding an integral effect

We consider the system

$$\dot{x}(t) = Ax(t) + Bu(t) + p$$

where p is an unknown and constant disturbance vector, supposed to represent an external disturbance that could not be taken into account in the modelling.

A feedback controller with integral effect is of the form

$$u(t) = \underbrace{L_i \int_0^t (e(t) - y(t)) dt}_{\text{integral effect}} - \underbrace{L_x(t)}_{\text{state feedback}}$$

Let's pose $z(t) = \int_0^t (e(t) - y(t)) dt \Leftrightarrow \dot{z}(t) = e(t) - y(t)$.

Control theory: state-space approach for linear systems 2 janvier 2022 16 / 18

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) + p \\ \dot{z}(t) = e(t) - y(t) \\ u(t) = L_i z(t) - Lx(t) \end{cases}$$

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) + p \\ \dot{z}(t) = e(t) - y(t) \\ u(t) = L_i z(t) - Lx(t) \end{cases}$$
$$\iff \begin{cases} \dot{x}(t) = (A - BL)x(t) + BL_i z(t) + p \\ \dot{z}(t) = e(t) - y(t) \end{cases}$$

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) + p \\ \dot{z}(t) = e(t) - y(t) \\ u(t) = L_i z(t) - Lx(t) \end{cases}$$
$$\iff \begin{cases} \dot{x}(t) = (A - BL)x(t) + BL_i z(t) + p \\ \dot{z}(t) = e(t) - y(t) \end{cases}$$
$$\iff \begin{pmatrix} \dot{x}(t) \\ \dot{z}(t) \end{pmatrix} = \begin{pmatrix} A - BL & BL_i \\ -C & 0 \end{pmatrix} \begin{pmatrix} x(t) \\ z(t) \end{pmatrix} + \begin{pmatrix} p \\ e(t) \end{pmatrix}.$$

Control theory: state-space approach for linear systems 2 janvier 2022 17 / 18

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) + p \\ \dot{z}(t) = e(t) - y(t) \\ u(t) = L_i z(t) - Lx(t) \end{cases}$$
$$\iff \begin{cases} \dot{x}(t) = (A - BL)x(t) + BL_i z(t) + p \\ \dot{z}(t) = e(t) - y(t) \end{cases}$$
$$\iff \begin{pmatrix} \dot{x}(t) \\ \dot{z}(t) \end{pmatrix} = \begin{pmatrix} A - BL & BL_i \\ -C & 0 \end{pmatrix} \begin{pmatrix} x(t) \\ z(t) \end{pmatrix} + \begin{pmatrix} p \\ e(t) \end{pmatrix}.$$

The evolution matrix of the looped system is always of the form A' - B'L', and the choice of L and L_i is then also made by pole-placement.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0