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Linear systems described by state-space representations{
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
(1)

in which the time, denoted k , takes some discrete values (e.g. Z).
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From a TF to a state-space repr.

Same observation as in the continuous-time case :

I A given system admits several equivalent state-space representations.

I Consequentlty, from a transfer function there exist several methods to

get the distinct but equivalent state-space representations of a system,

each of them having a particular form.
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From a TF to a state-space repr.

Controllable Canonical Form


x(k + 1) =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

 x(k) +


0
0
...
0
1

 u(k)

y(k) =
(
b0 b1 . . . bn−1

)
x(k)

.
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From a TF to a state-space repr.

Observable Canonical Form


x(k + 1) =


−an−1 1 0 . . . 0

−an−2 0 1 . . . 0
...

...
...

. . .
...

−a1 0 0 . . . 1

−a0 0 0 . . . 0

 x(k) +


bn−1
bn−2
...

b1
bn

 u(k)

y(k) =
(
1 0 . . . 0

)
x(k)

.
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Solution to state-space equations

Theorem
x(k0) value of the state at initial time-instant k0, state at k is given by

x(k) = Ak−k0x(k0) +
k−1∑
l=k0

Ak−1−lBu(l) , (2)

and the output can be written

y(k) = CAk−k0x(k0) +
k−1∑
l=k0

CAk−1−lBu(l) . (3)

The proof proceeds by induction.
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Stability

De�nition
A linear system is said to be stable if when the input is set to zero, then

the output-response tends to zero while t tends to in�nity.

Assume u(k) 6= 0 for k ∈ [k0, k1], state at k1 is given by :

x(k1) = Ak1−k0x(k0) +

k1−1∑
l=k0

Ak1−1−lBu(l) .

If u(k) = 0 for k > k1, state for k ≥ k1 can be written :

x(k) = Ak−k1x(k1) +
k−1∑
l=k1

Ak−1−lBu(l)

= Ak−k1x(k1) (since u(l) = 0 for l ≥ k1) ,

which tends to zero while k →∞ if limk→∞ Ak−k1 = 0.
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Stability

De�nition
A linear system is said to be stable if, for a time large enough, the state

does not depend anymore on its initial conditions.

By considering k1 = 0, characterizing stability is equivalent to seek

conditions such that

lim
k→∞

Ak = 0 .

Theorem
A linear system is said to be stable if, and only if, all the eigenvalues of its

matrix evolution have a modulus strictly less than 1.
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Stability

De�nition
The characteristic polynomial P(z) of a linear system is de�ned by

P(z) = |zI− A| (4)

The roots of P(z) are the eigenvalues of A.

Corollary (Stability criterion)

A linear system is said to be stable if, and only if, all the roots of its

characteristic polynomial have a modulus strictly less than 1.
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Coontrollability

Analogous to the time-continuous case !

Theorem (Controllability criterion)

A linear system is said to be controllable if, and only if,

rank

Γcom︷ ︸︸ ︷(
B|AB|A2B| . . . |An−1B

)
= n , (5)

where n is the dimension of matrix evolution A.
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Observability

Analogous to the time-continuous case !

Theorem (Observability criterion)
A linear system is said to be observable if, and only if,

rank


C
CA
...

CAn−1

 = n. (6)
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Continuous-time systems studied by means of a computer :

sampled discrete-time systems

-

�

- -
A, B, C , DDAC ZOH SAM ADC

Contin.-time process

Computer

u(k∆) y(k∆)

Sampled system

u(t) y(t)

Figure � Continuous-time system seen as a sampled discrete-time system by the
computer
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Sampled systems : discretizing a continuous-time

state-equation

• We consider a continuous-time state-space representation :{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(7)

• When it is sampled, it can be described at sampling time-instants k∆,

denoted k to lighten equations, by discrete-time equations :{
x(k + 1) = Aechx(k) + Bechu(k)

y(k) = Cechx(k)
(8)

• We want to �gure out matrices Aech, Bech and Cech from known

matrices A, B and C .

Control theory: state-space approach for linear systems2 janvier 2022 13 / 21



Sampled systems : discretizing a continuous-time

state-equation

• We consider a continuous-time state-space representation :{
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Sampled systems : discretizing a continuous-time

state-equation
Knowing the state-value at sampling-time tk = k∆, makes it possible to

�nd state at next sampling-time tk+1 = (k + 1)∆ :

x(tk+1) = eA(tk+1−tk )x(tk) +

tk+1∫
tk

eA(tk+1−τ)Bu(τ)dτ . (9)

The ZOH keeps u(t) at a constant value u(tk) = u(k∆), denoted u(k),
during time-interval [tk , tk+1[, we then have :

u(τ) = u(k) pour τ ∈ [tk , tk+1[ .

Let us state ν = τ − tk , and since ∆ = tk+1 − tk , (9) leads to :

x(k + 1) = eA∆x(k) +

∆∫
0

eA(∆−ν)dνBu(k) . (10)
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Sampled systems : discretizing a continuous-time

state-equation

By identifying terms, we obtain :

Aech = eA∆ (11)

Bech =

∆∫
0

eA(∆−ν)dνB (12)

Cech = C (13)

• Matrices Aech and Bech depend on sampling period ∆, and have to be

evaluated as soon as the sampling period changes.
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Sampled systems : choice of the sampling period

For sampled systems, the choice of sampling period ∆ is crucial since :

• if ∆ is too large, important pieces of information are lacking on the

evolution of the system from the computer point of view.

• if ∆ is too small, the computer is excessively "loaded". If the system

does evolve only a little bit between two successive samples, the piece

of information obtained by a new sample does not bring much and the

processor is then requested pointlessly.
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Sampled systems : choice of the sampling period

The choice of sampling period ∆ depends on the dynamics of the system.

Shannon's

fe ≥ 2fh

in which fe is the sampling frequency and fh is the highest frequency to be

kept into the signal.

Practical rule applied in control theory

5fh < fe < 25fh

On one side, it is an "over-sampling" compared to Shannon's theorem. On

the other side, this rule gives a bound to avoid to request too often and

unnecessarily the processor.
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Sampled systems : choice of the sampling period

Consequently, we select

5fh < fe < 25fh .

First-order system Second-order system

With fh ≈ 1

2πT fh ≈ ωn
2π

We then get 0.25T < ∆ < 1.25T 0.25 < ∆ωn < 1.25

Control theory: state-space approach for linear systems2 janvier 2022 18 / 21



Example : container handling gantry crane

State-space representation and transfer function : ẋ(t) =

(
0 g
− 1

L 0

)
x(t) +

(
0
1

L

)
u(t)

y(t) =
(

1 0
)
x(t)

H(s) = C (sI− A)−1B =
1

1 + L
g s

2
.

It is a second-order system for which the natural frequency is given by ωn =
√

g
L .

Sampling period ∆ can then be chosen into interval]
0.25

√
L

g
, 1.25

√
L

g

[
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Example : container handling gantry crane
State-space representation of the system sampled at period ∆ :

Using formula eAt = L−1
[
(sI− A)−1

]
, we have 1 :

eAt = L−1
[(

s
s2+g/L

g
s2+g/L

− 1/L
s2+g/L

s
s2+g/L

)]

=

(
cos
(√

g
L t
) √

gL sin
(√

g
L t
)

− 1√
gL

sin
(√

g
L t
)

cos
(√

g
L t
) )

Hence

Aech =

(
cos
(√

g
L∆
) √

gL sin
(√

g
L∆
)

− 1√
gL

sin
(√

g
L∆
)

cos
(√

g
L∆
) )

1. As a reminder, Laplace transform of :

• sin(ωt) is ω
s2+ω2 ;

• cos(ωt) is s
s2+ω2 .
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Example : container handling gantry crane

We get 2 Bech =
∫ ∆

0
eA(∆−ν)dνB :

Bech

=

∫ ∆

0

(
cos
(√

g
L∆−

√
g
Lν
) √

gL sin
(√

g
L∆−

√
g
Lν
)

−1/
√
gl sin

(√
g
L∆−

√
g
Lν
)

cos
(√

g
L∆−

√
g
Lν
) )

dνB

=

[(
−
√

g
L sin

(√
g
L∆−

√
g
Lν
)
−L cos

(√
g
L∆−

√
g
Lν
)

1

g cos
(√

g
L∆−

√
g
Lν
)

−
√

g
L sin

(√
g
L∆−

√
g
Lν
) )]∆

0

B

=

(
−1 + cos

(√
g
L∆
)

1√
(gL)

sin
(√

g
L∆
) )

Cech = C =
(

1 0
)

2. As a reminder, the derivative of :

• 1
ω
sin(ωt + φ) is cos(ωt + φ) ;

• − 1
ω
cos(ωt + φ) is sin(ωt + φ).
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