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Linear systems described by state-space representations

{ x(k+1) = Ax(k)+ Bu(k) (1)
y(k) = (k)

in which the time, denoted k, takes some discrete values (e.g. Z).
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From a TF to a state-space repr.

Same observation as in the continuous-time case :

> A given system admits several equivalent state-space representations.
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From a TF to a state-space repr.

Same observation as in the continuous-time case :

> A given system admits several equivalent state-space representations.

> Consequentlty, from a transfer function there exist several methods to
get the distinct but equivalent state-space representations of a system,
each of them having a particular form.
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From a TF to a state-space repr.

Controllable Canonical Form

0 1 0 0 0
0 0 1 0 0
x(k+1) = : x(k) + u(k)
0 0 0 1 0
—dp —4di1 —az —dp—1 1
y(k) = (bo bl b,,_l )X(k)
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From a TF to a state-space repr.

Observable Canonical Form

( —dap—1 1 0 bnfl
—dap—2 1 0 bn—2
x(k+1) = : D x(k) + u(k)
—al 0 0 1 b1
—a 0 0 0 bn
y(k) = (1 0 0 ) x(k)
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Solution to state-space equations

Theorem
x(ko) value of the state at initial time-instant kg, state at k is given by

k—1
x(k) = A" Rox(ko) + > AT/ Bu()) (2)
I=ko
and the output can be written
k—1
y(k) = CA*ox(ko) + > CA1'Bu(l) . (3)
I=ko
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Solution to state-space equations

Theorem
x(ko) value of the state at initial time-instant kg, state at k is given by

k—1
x(k) = A" Rox(ko) + > AT/ Bu()) (2)
I=ko

and the output can be written

k—1
y(k) = CA*ox(ko) + > CA1'Bu(l) . (3)
I=ko

The proof proceeds by induction.
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Stability

Definition

A linear system is said to be stable if when the input is set to zero, then
the output-response tends to zero while t tends to infinity.
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Stability

Definition
A linear system is said to be stable if when the input is set to zero, then
the output-response tends to zero while t tends to infinity.

Assume u(k) # 0 for k € [ko, k1], state at kg is given by :

ki—1

x(ky) = A Rox(ko) + Y - AT Bu(l) .
I=ko
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Stability

Definition
A linear system is said to be stable if when the input is set to zero, then
the output-response tends to zero while t tends to infinity.

Assume u(k) # 0 for k € [ko, k1], state at kg is given by :
ki —1

x(ky) = A Rox(ko) + Y - AT Bu(l) .
I=ko

If u(k) =0 for k > kq, state for k > k; can be written :

k=1
x(k) = ARx(l) + 3 AR Bu())
=k1
= Akhix(ky) (since u(/) =0 for I > ky),

which tends to zero while k — 00 if limy_ AK=k = 0.
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Stability

Definition
A linear system is said to be stable if, for a time large enough, the state
does not depend anymore on its initial conditions.
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Stability

Definition

A linear system is said to be stable if, for a time large enough, the state
does not depend anymore on its initial conditions.

By considering k; = 0, characterizing stability is equivalent to seek

conditions such that
lim Ak =0.

k—o0
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Stability

Definition
A linear system is said to be stable if, for a time large enough, the state
does not depend anymore on its initial conditions.

By considering k; = 0, characterizing stability is equivalent to seek
conditions such that

lim Ak =0.

k—o00
Theorem
A linear system is said to be stable if, and only if, all the eigenvalues of its
matrix evolution have a modulus strictly less than 1.
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Stability

Definition
The characteristic polynomial P(z) of a linear system is defined by

P(z) = |z1 - Al (4)

The roots of P(z) are the eigenvalues of A.
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Stability

Definition
The characteristic polynomial P(z) of a linear system is defined by

P(z) = |z1 - Al (4)
The roots of P(z) are the eigenvalues of A.

Corollary (Stability criterion)

A linear system is said to be stable if, and only if, all the roots of its
characteristic polynomial have a modulus strictly less than 1.
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Coontrollability

Analogous to the time-continuous case!

Theorem (Controllability criterion)

A linear system is said to be controllable if, and only if,

rcom

rank (B|AB|A’B|...|A"'B) = n,

where n is the dimension of matrix evolution A.
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Observability

Analogous to the time-continuous case!

Theorem (Observability criterion)
A linear system is said to be observable if, and only if,

C

CA
rank . =n.

CA"71
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Continuous-time systems studied by means of a computer :

sampled discrete-time systems
Sampled system

u(t) Contin.-time process (1) o y(kA)
|
|
|
|
|
L & o o o o o o o o e e e e e e 2 J
Computer -
stem, seen as a sampled discrete-time system by the

Figure — Continuous-time system



Sampled systems : discretizing a continuous-time
state-equation

e We consider a continuous-time state-space representation :

x(t) = Ax(t)+ Bu(t)
{y(t) — (1) )
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Sampled systems : discretizing a continuous-time
state-equation

e \We consider a continuous-time state-space representation :

x(t) = Ax(t)+ Bu(t)
{y(t) — (1) )

e When it is sampled, it can be described at sampling time-instants kA,
denoted k to lighten equations, by discrete-time equations :

{x(k—i—l) = Aechx(k) + Bechu(k) (8)
Y(k) = Cechx(k)
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Sampled systems : discretizing a continuous-time
state-equation

e \We consider a continuous-time state-space representation :

x(t) = Ax(t)+ Bu(t)
{y(t) — (1) )

e When it is sampled, it can be described at sampling time-instants kA,
denoted k to lighten equations, by discrete-time equations :

{X(k+1) = Aechx(k) + Bechu(k) (8)
Y(k) = Cechx(k)

e We want to figure out matrices Aech, Bech and Cecpp from known
matrices A, B and C.
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Sampled systems : discretizing a continuous-time

state-equation
Knowing the state-value at sampling-time t, = kA, makes it possible to
find state at next sampling-time t,11 = (k+1)A :

tet
x(trq1) = Bt x (1) + / eAtr1=7) By(7)dr . (9)

ty
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Sampled systems : discretizing a continuous-time
state-equation

Knowing the state-value at sampling-time t, = kA, makes it possible to
find state at next sampling-time ty11 = (k+ 1)A :

tet
x(trq1) = Bt x (1) + / eAtr1=7) By(7)dr . (9)
ty

The ZOH keeps u(t) at a constant value u(tx) = u(kA), denoted u(k),
during time-interval [ty, txt1[, we then have :

u(t) = u(k) pour 7 € [t, tiy1] -
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Sampled systems : discretizing a continuous-time

state-equation

Knowing the state-value at sampling-time t, = kA, makes it possible to
find state at next sampling-time ty11 = (k+ 1)A :

tet
x(trq1) = Bt x (1) + / eAtr1=7) By(7)dr . (9)
ty
The ZOH keeps u(t) at a constant value u(tx) = u(kA), denoted u(k),
during time-interval [ty, txt1[, we then have :
u(t) = u(k) pour 7 € [t, tiy1] -
Let us state v = 7 — tx, and since A = tx 1 — tx, (9) leads to :
A
x(k +1) = e*x(k) + / "B dyBu(k) . (10)
0
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Sampled systems : discretizing a continuous-time
state-equation

By identifying terms, we obtain :

Aech = €A (11)
A

Beeh = / ACduB (12)
0

Ceeh = C (13)
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Sampled systems : discretizing a continuous-time
state-equation

By identifying terms, we obtain :

Aech = €8 (11)
A

Beeh = / eABMgyB (12)
0

Ceen = C (13)

e Matrices Agcp, and Becp depend on sampling period A, and have to be
evaluated as soon as the sampling period changes.
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Sampled systems : choice of the sampling period

For sampled systems, the choice of sampling period A is crucial since :
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Sampled systems : choice of the sampling period

For sampled systems, the choice of sampling period A is crucial since :

e if A is too large, important pieces of information are lacking on the
evolution of the system from the computer point of view.
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Sampled systems : choice of the sampling period

For sampled systems, the choice of sampling period A is crucial since :

e if A is too large, important pieces of information are lacking on the
evolution of the system from the computer point of view.

e if Ais too small, the computer is excessively "loaded". If the system
does evolve only a little bit between two successive samples, the piece
of information obtained by a new sample does not bring much and the
processor is then requested pointlessly.
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Sampled systems : choice of the sampling period

The choice of sampling period A depends on the dynamics of the system.
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Sampled systems : choice of the sampling period

The choice of sampling period A depends on the dynamics of the system.
Shannon'’s

fe > 21y

in which f is the sampling frequency and f}, is the highest frequency to be
kept into the signal.
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Sampled systems : choice of the sampling period

The choice of sampling period A depends on the dynamics of the system.

Shannon’s

fe > 21y

in which f is the sampling frequency and f}, is the highest frequency to be
kept into the signal.

Practical rule applied in control theory

5f, < fo < 251,

On one side, it is an "over-sampling" compared to Shannon’s theorem. On
the other side, this rule gives a bound to avoid to request too often and
unnecessarily the processor.
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Sampled systems : choice of the sampling period

Consequently, we select

5fp, < fo < 251, .

First-order system

Second-order system

With

We then get

o~ 1
fh”sz

0.25T < A <1.25T

fh%;’—;

0.25 < Aw, < 1.25
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Example : container handling gantry crane

State-space representation and transfer function :

1
H(s) = C(sl — A)™'B =
()= Clel = A "B = 1
g
It is a second-order system for which the natural frequency is given by w, = /§.

Sampling period A can then be chosen into interval
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Example : container handling gantry crane

State-space representation of the system sampled at period A :

Using formula e* = £71 (sl — A)™*], we have!

g
52 L s2 L
2+g/L s24+g/L

L~
( VeLsin (\/%t) )

At —

%f) cos (/{1)

Hence

ﬁsm (\/%A) cos (\/%A)

1. As a reminder, Laplace transform of :

e sin(wt) is

Ach = ( cos(VEA) - Valsin(y/TA) )

W .
24w? !

e cos(wt) is 7z
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Example : container handling gantry crane

We get? By = fOA A=) dyB :

S ST e A e
B I S IR
b AR

(e
Ceen = C = ( 0)

2. As a reminder, the derivative of :
o Lsin(wt+ @) is cos(wt + ) ;
o —Lcos(wt+ @) is sin(wt + ¢).
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