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Continuous-time systems

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

Time is assumed to be continuous, that is t takes its values into R.
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From a state-space repr. to a TF
How to obtain the transfer function of a system described by its
state-space representation ?


ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)
x(0) = 0

⇐⇒
{

sX (s) = AX (s) + BU(s)
Y (s) = CX (s)

⇐⇒
{

(sI− A)X (s) = BU(s)
Y (s) = CX (s)

⇐⇒
{

X (s) = (sI− A)−1BU(s)
Y (s) = CX (s)

Finally, we obtain

Y (s) =
[
C (pI− A)−1B

]
U(s) , or,

Y (s)

U(s)
= C (sI− A)−1B.

C (sI− A)−1B is the transfer matrix of the system (transfer function in
the single-input single-output case).
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Example : container handling gantry crane

State-space representation : ẋ(t) =

(
0 g
− 1

L 0

)
x(t) +

(
0
1
L

)
u(t)

y(t) =
(

1 0
)
x(t)

.

We have

sI− A =

(
s −g
1
L s

)
, |sI− A| = s2 +

g

L
, com(sI− A) =

(
s − 1

L
g s

)

(sI− A)−1 =
1

|sI− A|
com(sI− A)> =

1

s2 + g
L

(
s g
− 1

L s

)
.

Then we obtain

H(s) = C (sI− A)−1B =
g
L

s2 + g
L

=
1

1 + L
g s

2
.
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From a TF to a state-space repr.

I We have already noticed that a given system admits several
equivalent state-space representations.

I Consequentlty, from a transfer function there exist several methods to
get the distinct but equivalent state-space representations of a
system, each of them having a particular form.

Control theory: state-space approach for linear systems 2 janvier 2022 5 / 19



From a TF to a state-space repr.

I We have already noticed that a given system admits several
equivalent state-space representations.

I Consequentlty, from a transfer function there exist several methods to
get the distinct but equivalent state-space representations of a
system, each of them having a particular form.

Control theory: state-space approach for linear systems 2 janvier 2022 5 / 19



From a TF to a state-space repr.

Controllable Canonical Form
ẋ(t) =

 0 1 0
0 0 1
−a0 −a1 −a2

 x(t) +

 0
0
1

 u(t)

y(t) =
(
b0 b1 b2

)
x(t)

.
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From a TF to a state-space repr.

Observable Canonical Form
ẋ(t) =

0 0 −a0

1 0 −a1

0 1 −a2

 x(t) +

 b0

b1

b2

 u(t)

y(t) =
(
0 0 1

)
x(t)

.
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Simulation using a state-space representation

Euler’s method
Let dt be a very small number compared to time-constants of the system.
dt is the sampling period of the method. The evolution equation can be
approximated by

x(t+dt)−x(t)
dt ' Ax(t) + Bu(t) (1)

or
x(t + dt) ' x(t) + Ax(t) · dt + Bu(t) · dt (2)
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Simulation using a state-space representation

Simulation algorithm

x:=x0; t:=0; dt:=0.01;

repeat

assign its value to u;

y:=Cx;

output (display or put into memory) y;

x:=x+A.x.dt+B.u.dt;

wait for an interruption from the sampler;

t=t+dt;

indefinitely

The simulation goes at the same speed as the evolution of the real
process : real-time simulation.
Batch mode simulation : line, at which an interruption of the sampler is
waited for, is removed from the algorithm (in order to obtain simulation
result as fast as possible).
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Solution to state-space equations

Theorem
x(t0) value of the state at initial time-instant t0, state at t is given by

x(t) = eA(t−t0)x(t0) +

t∫
t0

eA(t−τ)Bu(τ)dτ , (3)

and the output can be written

y(t) = CeA(t−t0)x(t0) +

t∫
t0

CeA(t−τ)Bu(τ)dτ . (4)
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Solution to state-space equations

Equation (3) gives the state for all t ≥ t0 from the initial state x(t0), and
the input u(t) applied along time-interval [t0, t].

I Function CeA(t−t0)x(t0) describes the autonomous response of the
system

I Function
t∫
t0

CeA(t−τ)Bu(τ)dτ describes the forced behavior.

See appendices for a reminder about matrix exponential.
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Stability

Definition
A linear system is said to be stable if when the input is set to zero, then
the output-response tends to zero while t tends to infinity.

Assume u(t) 6= 0 for t ∈ [t0, t1], state at t1 is given by :

x(t1) = eA(t1−t0)x(t0) +

t1∫
t0

eA(t1−τ)Bu(τ)dτ .

If u(t) = 0 for t > t1, state for t ≥ t1 can be written :

x(t) = eA(t−t1)x(t1) +
t∫
t1

eA(t−τ)Bu(τ)dτ

= eA(t−t1)x(t1) ,

which tends to zero while t →∞ if limt→∞ eA(t−t1) = 0 .
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Stability

Definition
A linear system is said to be stable if, for a time large enough, the state
does not depend anymore on its initial conditions.

By considering t1 = 0, characterizing stability is equivalent to seek
conditions such that

lim
t→∞

eAt = 0 .

Theorem
A linear system is said to be stable if, and only if, all the eigenvalues of its
matrix evolution have a strictly negative real part.
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Stability

Definition
The characteristic polynomial P(s) of a linear system is defined by

P(s) = |sI− A| (5)

The roots of P(s) are the eigenvalues of A.

Single-input single-output case : P(s) is the denominator of the transfer
function of the system, and its roots correspond to the poles.

Corollary (Stability criterion)

A linear system is said to be stable if, and only if, all the roots of its
characteristic polynomial have a strictly negative real part.
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Example : container handling gantry crane

State-space representation : ẋ(t) =

(
0 g
− 1

L 0

)
x(t) +

(
0
1
L

)
u(t)

y(t) =
(

1 0
)
x(t)

.

From this state-space representation, stability of the system can be decided by
evaluating the eignevalues of A which are also the roots of its characteristic
polynomial :

P(s) = |sI− A| =

∣∣∣∣ s −g
1
L s

∣∣∣∣ = s2 +
g

L
.

These roots are pure imaginary numbers ±i
√

g
L . The system is consequently

unstable.
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Controllability

Definition (Controllability)

A linear system is said to be controllable if for any pair of state-vectors
(x0, x1), one can find a time-instant t1 and an input u(t), t ∈ [t0, t1], such
that the system, initialized with x0 at time t0, can reach the state x1 at t1.

No assumption on the range of signals, and in particular for u !

Theorem (Controllability criterion)

A linear system is said to be controllable if, and only if,

rank

Γcom︷ ︸︸ ︷(
B|AB|A2B| . . . |An−1B

)
= n , (6)

where n is the dimension of matrix evolution A.
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Example : container handling gantry crane

State-space representation : ẋ(t) =

(
0 g
− 1

L 0

)
x(t) +

(
0
1
L

)
u(t)

y(t) =
(

1 0
)
x(t)

.

We have

Γcom =
(
B AB

)
=

(
0 g

L
1
L 0

)
The determinant of Γcom is not equal to zero, this implies that the rank of Γcom is
then equal to 2 (the dimension of A), and we can conclude that the system is
controllable. This means that, from any initial value of the state (state variables
are the mass speed and angle θ), it is possible to give to the state any desired
value.
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Observability

Definition (Observability)

A linear system is said to be observable if the knowledge of y(t) and u(t)
for t ∈ R is sufficient to determine state x(t), for all t.

Impossibilities for measuring state variables : if the system is observable,
then there exists a way for evaluating the values of these variables by
means of output measures.

Theorem (Observability criterion)
A linear system is said to be observable if, and only if,

rang


C
CA
...

CAn−1

 = n. (7)
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Example : container handling gantry crane

State-space representation : ẋ(t) =

(
0 g
− 1

L 0

)
x(t) +

(
0
1
L

)
u(t)

y(t) =
(

1 0
)
x(t)

.

We have

Γobs =

(
C
CA

)
=

(
1 0
0 g

)
,

|Γobs | = g 6= 0 and then rang(Γobs) = 2 = dim(A). The system is therefore
observable. This means that the knowledge of the input and the output is
sufficient to be able to evaluate the state variables.
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