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State-space representation

In this course, systems (physical, biological, chemical,... processes) are
described by equations having the following form :{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)(+Du(t))

(1)

with the assumption that time t is continuous (that is taking values in R).

I Vector u(t) is the input. Its value can be fixed arbitrarily for all t.

I Vector y(t) is the output which can be measured.

I Vector x(t) is called the state of the system. It’s a kind of ”memory”
for the system, since it gathers enough pieces of information needed
to predict the future behavior of the system (knowing the input u(t)).
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ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(1)

with the assumption that time t is continuous (that is taking values in R).

I Vector u(t) is the input. Its value can be fixed arbitrarily for all t.

I Vector y(t) is the output which can be measured.

I Vector x(t) is called the state of the system. It’s a kind of ”memory”
for the system, since it gathers enough pieces of information needed
to predict the future behavior of the system (knowing the input u(t)).

Control theory: state-space approach for linear systems 2 janvier 2022 2 / 12



State-space representation

In this course, systems (physical, biological, chemical,... processes) are
described by equations having the following form :{
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State-space representation

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(2)

I The first equation in (2) is called evolution equation or state
equation. This is a (set of) differential equation(s) which expresses
the ”trend” of state x(t) knowing its value at time-instant t and the
applied input u(t).

I The second equation in (2) is called output equation. It makes it
possible to compute the output vector y(t) knowing the state value
at t. Unlike the evolution equation, it is not a differential equation.

I The set of equations (2) constitute the state-space representation.
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If the system is studied by means of a computer, then the input and the
output cannot be examined continuously, but only at discrete time-instants
(synchronized with the processor clock). It is then necessary to consider
that time takes its values k in Z.

We then use a discrete-time state-space
representation involving recurrence equations :{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)(+Du(k))

(3)
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Several general remarks on the state-space representation :

I systems are studied in the time-domain,

I manipulations involve matrix algebra,

I the formalism makes it possible to naturally extend the results to
multiple-input multiple-output (MIMO) systems.
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State variables

First-order linear system described by a differential equation :

ẏ(t)− ay(t) = bu(t), y(0+) = y0.

The solution to this equation is

y(t) = y(0+) · eat +

t∫
0

b · ea(t−x) · u(x)dx

It makes it visible that we need to know the whole past of the input
(before t) to be able to evaluate the current output value (at t).
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State variables

On the contrary, using state-space representation,{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

the output at t of the same linear system can be directly deduced from the
knowledge of the state at t.

In a way, state vector x(t) provide a complete knowledge of the past
functioning of the system (of what happened in the past).
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Example : container handling gantry crane

The choice of state-variables is the most tricky step to derive a state-space
representation.

One possible reasoning is to select a set of variables describing the ”stocks
of energy” into the system as state variables.

This way, we can guess that the mass-speed (rendering the kinetic energy)
and the angle θ (rendering the potential energy) are good state variables
for this system.

We can then choose

x =

(
vm
θ

)
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Example : container handling gantry crane

From the equations

dθ

dt
= −1

L
vm +

1

L
vc ,

dvm
dt

(= am) = gθ,

with

x =

(
vm
θ

)
, u = vc , y = vm,

we deduce a state-space representation for the system : ẋ(t) =

(
0 g
− 1

L 0

)
x(t) +

(
0
1
L

)
u(t)

y(t) =
(

1 0
)
x(t)

.
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Remarks

As mentioned before, the variables describing the ”stocks of energy” into
the system are good candidates for state variables.

An alternative reasoning is ”find a set of variables such that the knowledge
of their values at t is sufficient to predict the future of the output”.

The minimal number of variables needed for its state corresponds to the
order of the system.
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Equivalent state-space representations

Let us consider a continuous-time state-space representation for a system.
Let P be a square invertible (non-singular) matrix and χ(t) = P−1x(t),
A′ = P−1AP, B ′ = P−1B, C ′ = CP.

We then have{
χ̇(t) = A′χ(t) + B ′u(t)
y(t) = C ′χ(t)

(4)

These last equations have an identical form to the original state-space
representation. In other words, we can get that way a second state-space
representation for the same system.

Control theory: state-space approach for linear systems 2 janvier 2022 11 / 12



Equivalent state-space representations
Let us consider a continuous-time state-space representation for a system.
Let P be a square invertible (non-singular) matrix and χ(t) = P−1x(t),
A′ = P−1AP, B ′ = P−1B, C ′ = CP. We then have{

χ̇(t) = A′χ(t) + B ′u(t)
y(t) = C ′χ(t)

(4)

If we replace χ, A′, B ′ and C ′ by their expression, we get{
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Equivalent state-space representations

I With a similar reasoning, it is possible to get equivalent
state-representations for discrete-time systems.

I A system admits as many equivalent state-representations as there
exist different square invertible matrices P.

I Vector χ(t) is another valid state vector for the system. Except if P is
equal to the identity matrix, the state variables have then a different
”physical meaning”.
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