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Dynamical model and system

A system (and its model) is said to be
» deterministic if for all input u(t), there exists only one possible
output y(t). On the contrary, in the non-deterministic or stochastic
case, there are several possible outputs, each of them having a
probability of occurring.

Control theory: state-space approach for linear systems 2 janvier 2022 2/17



Dynamical model and system

A system (and its model) is said to be

» deterministic if for all input u(t), there exists only one possible
output y(t). On the contrary, in the non-deterministic or stochastic
case, there are several possible outputs, each of them having a
probability of occurring.

» linear, if the superposition principle applies :

S(kl . ul(t) + ko - Uz(t)) = kq - S(Ul(t)) + ko - S(U2(t)) .
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Dynamical model and system

A system (and its model) is said to be

» deterministic if for all input u(t), there exists only one possible
output y(t). On the contrary, in the non-deterministic or stochastic
case, there are several possible outputs, each of them having a
probability of occurring.

» linear, if the superposition principle applies :
S(kl . ul(t) + ko - Uz(t)) = kq - S(Ul(t)) + ko - S(UQ(t)) .

» stationnary if the relations between the input and the output remain
the same as time ellapses (no variation of system- parameters).
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Dynamical model and system

A system (and its model) is said to be

» deterministic if for all input u(t), there exists only one possible
output y(t). On the contrary, in the non-deterministic or stochastic
case, there are several possible outputs, each of them having a
probability of occurring.

» linear, if the superposition principle applies :
S(kl . ul(t) + ko - Uz(t)) = kq - S(Ul(t)) + ko - S(UQ(t)) .

» stationnary if the relations between the input and the output remain
the same as time ellapses (no variation of system- parameters).

» causal if system output at any time instant tp, y(tp), does not
depend on future values of input u(t), t > to (all the physical systems
are causal).
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Example : container handling gantry crane

FIGURE — container handling gantry crane

We focus on horizontal shifting of set trolley-cables-container (lifting is
stopped).

We aim at regulating the container speed while avoiding the
container to swing (dangling).
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Example : container handling gantry crane

> Set trolley-cables-container modeled as a pendulum with a mobile pivot

» Cables = indeformable solid, in pivot-connection with

the trolley

» Container = punctual mass placed in the center of gravity

» Frictions are neglected

chariot

L_o__.2

container masse

Schématisation de 1’ensemble chariot-cébles-container Abstraction sous la
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Example : container handling gantry crane

chariot

m | mass of the container
L | cables length (= indeformable solid)

g | gravity acceleration

Pm:Vm, @m | position, speed and acceleration of the mass
projected onto axis X
PeiVe, ac | position, speed and acceleration of the trolley
projected onto axis X
0 angle between cables and the vertical axis
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Example : container handling gantry crane

The goal is to regulate the mass-speed while avoiding it to swing. We
consider that :

> the input of the system is the horizontal speed of the trolley v, (at
any time instant t, we assume to be able to set the value of v(t));

> the output of the system is the horizontal speed v,, of the mass
(container).

We neglect disturbances (noises) influencing the system : we could take
into account the wind (uncontrolled exogeneous quantity influencing the
container-dangling).

This system is deterministic : an input v, leads to only one possible
output vp,.

This system is causal : the output value at a time instant ty, vp,(to),does
not depend on any future value of the input vc(t) for t > to.
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Example : container handling gantry crane

Modelling of this system : to obtain the differential equations (parametric
model) describing the evolution of variables :
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Example : container handling gantry crane

Modelling of this system : to obtain the differential equations (parametric
model) describing the evolution of variables :

We have p. = pm + Lsin @, hence the trolley speed is related to the mass-speed
by :
dsinf

Ve = Vm + LT (1)

Pm Pe

Lsin®
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Example : container handling gantry crane

Fundamental principle of the dynamics (Newton's second law) applied to the
mass and projected onto X gives : ma, = T sind.

Cables considered as indeformables = T = mg cos 6.
We deduce that

ma, = mgsinf cos 6 (2)

mg cos
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Example : container handling gantry crane

System modeled by the equations

Loy +Ldsin@
c — m dt

ma,, = mgsin 6 cosf
> stationnary since the parameters in these differential equations (that is m,

g and L) are assumed to be constant as time ellapses.

» not linear.
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Example : container handling gantry crane

System modeled by

dsinf
Ve = Vp L% may, = mg sin 6 cos 6

To have a linear model, we assume approximations on the behavior of the system
(less precise model but easier to use since linear) : we consider that § ~ 0 and so
cosf ~ 1, sinf ~ 0. We deduce the following linear model :

do 1 1

a - Lmtve (3)
dv,

—\=am) = 4
(= am) = g0 (4)
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Reminders about linear systems

CONTINUOUS TIME

Convolution

y(t) = (th * u)(t)
bfh(ﬂ')u(t —7)dT

Transfer F.

bns™+bpm_15™ " +...+bys+by

H(S) = s"+a,_1s""14+...+a;s+ag
L)) = H(s)
Y(s) = H(s)U(s)

Diff. Equ.

Yy +a,_ 1y + a1y + agy
= bpul™ 4 bp_1u(mY & 4 bii+ bou
C.ly(0%),y(0%),...,y("=D(0%)
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Example : container handling gantry crane

Laplace transform of equations

o 1 1 Wi,
gt e g G e
is 1 1
sO(s) = ~7 Vin(s) + 1 V.(s), sVin(s) = g0(s),

assuming 6(0) = 0, v,,(0) = 0, v.(0) = 0 for initial conditions.

A transfer function can then be deduced.
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Example : container handling gantry crane

We have obtained :

{ 50(s) = —FVi(s) + 2Ve(s)
sVim(s) = 80O(s) <= O(s) = £ Va(s)

This leads to
s2 1
EVm(S) - va(s) + ZVC(S)
e (Z ) Vs = Lvs)
g L) ™
Hence y ) v
m(s) _ - _ (5) — H(S)
Ve(s) 1+ 55 U(s)
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Example : container handling gantry crane

The obtained transfer function

is a second-order ones whose standard form is

1
=K
14265+ ()3

H(s)

By identification, we can deduce w, = \/% and £ = 0.
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Stability

A linear system is said to be stable if for all bounded-range input, the
output-response has also a bounded range.
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Stability

A linear system is said to be stable if for all bounded-range input, the
output-response has also a bounded range.

Equivalently, a linear system is said to be stable if when the input is set to
zero, then the output-response tends to zero while t tends to infinity.
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Stability

A linear system is said to be stable if for all bounded-range input, the
output-response has also a bounded range.

Equivalently, a linear system is said to be stable if when the input is set to
zero, then the output-response tends to zero while t tends to infinity.

Theorem (Stability criterion regarding the transfer function)

Let a system be described by its transfer function H(s). It is stable if, and
only if, the poles (i.e. the roots of the denominator of H(s)) have all a
strictly negative real part.
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Example : container handling gantry crane

We can guess that the system corresponding to the set trolley-cables-container is
not stable. For example, if the input is first set to a non-zero given value (the
trolley-speed is set to a non-zero value), and then set to zero (the trolley is
stopped) : in that case we can expect that the container will swing and these
oscillations will continue indefinitely (frictions are neglected so that the range of
the oscillations will not decrease) which means that the output-response will not
tend to zero asymptotically.
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Example : container handling gantry crane

We can guess that the system corresponding to the set trolley-cables-container is
not stable. For example, if the input is first set to a non-zero given value (the
trolley-speed is set to a non-zero value), and then set to zero (the trolley is
stopped) : in that case we can expect that the container will swing and these
oscillations will continue indefinitely (frictions are neglected so that the range of
the oscillations will not decrease) which means that the output-response will not
tend to zero asymptotically.

_ 1
_1+§52

H(s)

The roots of 1+ és2 (denominator of H(s), the transfer function) are +i,/%.
Their real-part is not strictly negative. This demonstrates that the system is
unstable.
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Precision

A controlled-system with output y(t) is all the more precise that the

difference between the desired output y4(t) and the actual output y(t) is
low. The precision can be quantified by :

e(t) = ya(t) — y(t)
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Precision

A controlled-system with output y(t) is all the more precise that the
difference between the desired output y4(t) and the actual output y(t) is
low. The precision can be quantified by :

e(t) = ya(t) — y(t)

The static precision £y denoting this error £(t) when t tends to infinity
(steady-state error), that is :

g0 = tll@o e(t) .
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Precision

A controlled-system with output y(t) is all the more precise that the
difference between the desired output y4(t) and the actual output y(t) is
low. The precision can be quantified by :

e(t) = ya(t) — y(t)

The static precision £y denoting this error £(t) when t tends to infinity
(steady-state error), that is :

g0 = tll>r7010 e(t) .

Sometimes, the stationary error is considered. The stationary error of order

n, denoted &, is the steady-state error for an input of the form U(s) = sin
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