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Motivations

Building a model. What for?

Model : mathematical description of the dynamic behavior of a real
process (system).

Several possible goals

I To analyze: to find system’s properties, to deduce some expectable
performances, to improve knowledge of the phenomena involved . . . ;

I To simulate: to predict evolution according to given scenarios, to
teach (flight simulator, nuclear power plant simulator, . . .) ;

I To control: to design controllers applied to systems such that no
human inputs are needed for correction (e.g. cruise control for
regulating a car’s speed).

The goal pursued conditions the model: accuracy, complexity, . . .
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Motivations

Modeling vs Identification

Two distinct approaches in order to build a model.

Modeling

One can build a so-called white-box model by describing precisely
phenomena occurring in the system. Depending on the type of the system,
we then use laws of Physics, of Chemistry, of Biology. . .. For example, a
model for a physical process can be established from the Newton
equations.

Identification
Starts from measurements of the behavior of the system and the external
influences (inputs to the system) and tries to determine a mathematical
relation between them without going into the details of what is actually
happening inside the system (black-box model).
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Motivations

Modeling vs Identification (cont’d)

Remarks
I Sometimes, these approaches are mixed to obtain a so-called grey-box

model.

I In a white-box model, parameters and variables have an
interpretation, that is a ”physical meaning”.

I On the contrary, the variables and the parameters of a black-box
model do not necessarily correspond to quantities which can be
discerned.
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Definitions

System

Part of the universe that is (arbitrarily) studied as a whole set.

-

-

-

-
System

u

b

y

x

• We watch (measure) the outputs y .

• We are interested by the state variables x . The outputs are state
variables which are measured.

• We influence the inputs u.

• The system is subjected to disturbances or noises b.
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Definitions

Model

Mathematical description of a system.

-

-

-

yM

xM

u
M

From u (the same input as the system’s ones), we can deduce yM and xM

that we expect to be close to y and x .
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A classification for systems (and for models)

A classification for systems
(and for models)
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A classification for systems (and for models)

Example

""

""

?

6

V1

θh

C1

C2

V2

Temperature probe

Valve 1

Valve 2

High-level sensor

Low-level sensor

We pay attention to the following quantities (variables) :

h : level of liquid,

θ : temperature of the liquid,

Vi : boolean state of the valve Vi ,

Ci : boolean state of the sensor Ci .
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A classification for systems (and for models)

Discrete variable, continuous variable

Def1: A variable is said to be discrete if it takes values in a countable
(denumerable) set (possibly infinite).

Ex: Vi ∈ {0, 1} and Ci ∈ {0, 1}.
Def2: A variable is said to be continuous if it takes values in an uncountable

(nondenumerable) set and if its behavior does not have any
discontinuity.

Ex: We may consider that h ∈ R and θ ∈ R.

Def3: A variable taking its values in an uncountable set and whose behavior
has discontinuities, is said to be hybrid.
A hybrid variable is piecewise continuous: it can be described by
means of a continuous variable on each piece and an additional
discrete variable can be used to take into account a discontinuity.

Ex: Speed of a pool ball hitting a rail.
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A classification for systems (and for models)

Continuous system, discrete event system, hybrid system

Def4:

a) A system is said to be a Discrete Event (Dynamic) System (DE(D)S) if
all its state variables are discrete.

b) A system is said to be a Continuous System (CS) if all its state
variables are continuous.

c) A system is said to be an Hybrid (Dynamic) System (H(D)S) if it has
at least one discrete variable and at least one continuous variable.

Ex:

a) If we consider as state variables
(
V1 V2 C1 C2

)>
, then it is a

DES.
b) If we consider as state variables

(
h θ

)>
, then it is a CS.

c) If we consider as state variables
(
h V1 V2

)>
, then it is a HS.
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A classification for systems (and for models)

CS, DES, HS (Remarks)

• The goal for modeling-identification imposes the type of model.
If we only want to establish the logical control of valves in order to
keep the level of liquid between the high and low sensors, then we can

use a model with
(
V1 V2 C1 C2

)>
as state vector (DES). If we

want to describe the evolution of h(t) when V1 = 1 and V2 = 0, we
then use a model with h as state with additional parameters such as
the flow through V1 and the surface area of the tank.
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A classification for systems (and for models)

CS, DES, HS (Remarks)

• A sampled continuous system is still a continuous system
(discrete-time).

• In a DES, the state transitions are instantaneous and correspond to
events. This explains the used term Discrete Event System.
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Scope of the course

Scope of the course
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Scope of the course

Scope of the course

We will focus our attention on

• identification (the course ”Modeling and Simulation” (3A) is
devoted to modeling)

• of continuous systems (a 4A-course deals with Discrete Event
Systems).
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Part II

Introduction to the identification of

continuous systems
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Reminders on models for continuous systems

Reminders on models for continuous
systems
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Reminders on models for continuous systems

Reminders on continuous time models

Convolution

y(t) = (h ∗ u)(t) =

t∫
0

h(τ)u(t − τ)dτ

Transfer Function

H(s) =
bns

n + bn−1s
n−1 + . . .+ b1s + b0

sn + an−1sn−1 + . . .+ a1s + a0
= L[h(t)]

Y (s) = H(s)U(s)

I Order: degree of the denominator

I Degree: degree of the numerator (often bn=0).
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Reminders on models for continuous systems

Reminders on continuous time models (ctd)

Differential equation

y (n) + an−1y
(n−1) + . . .+ a1ẏ + a0y

= bnu
(n) + bn−1u

(n−1) + . . .+ b1u̇ + b0u

With initial conditions y(0+), ẏ(0+), . . . , y (n−1)(0+)

I ∃ adequate tranformations from one model to the other

I n is a minimal value for the size of x
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Reminders on models for continuous systems

Reminders on discrete time models

Convolution

y(k) = (h ∗ u)(k) =
k∑

i=0

h(i)u(k − i)

Transfer function

H(z) =
bnz

n + bn−1z
n−1 + . . .+ b1z + b0

zn + an−1zn−1 + . . .+ a1z + a0
= Z[h(k)]

Y (z) = H(z)U(z)
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Reminders on models for continuous systems

Reminders on discrete time models (ctd)

Recursive equation

y(k + n) + an−1y(k + n − 1) + . . .+ a0y(k)

= bnu(k + n) + bn−1u(k + n − 1) + . . .+ b0u(k)

I.C. y(0), y(1), . . . , y(n − 1)
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Reminders on models for continuous systems

Reminders on discrete time models (ctd)
Continuous system studied as a discrete-time system by means of a
calculator'

&

$

%
- -

�

- Continuous process

Calculator

Discrete time sampled system

Sampler
A/D

D/A

zero-order
hold

I ∃ adequate tranformations from continuous model to discrete time
model
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Identification issue

Identification issue

Assumptions

linear and mono-variable models

Issue

- -
u

S
y

Measure of the responseChosen test signal

S linear and single-input single-output

How to establish a parametric model of S?
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Identification methodology

Identification methodology

Two steps

Two main steps in the identification procedure:

I choose a structure for the model: characterization (Part III);

I estimate the parameters numeric values in the model: estimation
(Part IV).
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Part III

Identification: characterization of continuous

systems
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Characterization

Characterization
The object here is to choose the structure for the model, that is, typically
to determine the value of n (order of the model).
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Outline of Part III

Characterization by means of a step response

Characterization using a random signal
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Characterization by means of a step response

Characterization by means of a step
response
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Characterization by means of a step response

First-order system

Properties

non-zero derivative, no overshoot
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Characterization by means of a step response

Second-order system

Properties

zero derivative, possible overshoot(s)
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Characterization by means of a step response

Second-order system

Properties

zero derivative, possible overshoot(s) but not necessarily !
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Characterization by means of a step response

n-order system (with n > 2)

Difficult characterization by means of a step response

I Various possible shapes

I Superimposition of responses of first and second order subsystems

Possible approaches

I Approximate the system as a first-order or second-order system

I Use a more sophisticated method
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Characterization by means of a step response

Systems with ideal delay
There exist systems for which there is a time-delay between the input
applied and the output response of the system.

Figure: Step response of a first order system with an ideal time-delay
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Characterization by means of a step response

Systems with ideal delay

Denoting τ the value of the time-delay, and r the number of discrete-time
step(s) corresponding to τ , we have for n-order systems:

Continuous-time Discrete-time

H(s) = bnsn+...+b0
sn+...+a0

e−sτ H(z) = K bnzn+...+b0
zn+...+a0

z−r

I for a discrete time sampled system r = bτ/∆c
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Characterization by means of a step response

Systems with ideal delay

Let us point out that

bnz
n + bn−1z

n−1 . . .+ b0

zn + an−1zn−1 + . . .+ a0
z−r

=
βn+rz

n+r + βn+r−1z
n+r−1 + . . .+ β0

zn+r + αn+r−1zn−1+r + . . .+ α1z + α0

with

• βn+r = . . . βn+1 = 0 and βn = bn, . . ., β0 = b0,

• αn+r−1 = an−1, . . ., αr = a0 and αr−1 = . . . = α0 = 0.

⇒ a n-order system with r ideal delays can be studied by means of
a n + r-order model
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Characterization using a random signal

Characterization using a random signal

S. Lahaye System identification January 3, 2023 39 / 84



Characterization using a random signal

Motivations

Order determination using a step response

I May be inaccurate: based on observations of the curve-shape (with
possible noises on its measure)

I Limited to n-order systems with n ≤ 2

Order determination by means of quotient of instrumental
determinants (QID) test

I Use a response to any (random) input

I Determine the order of a system in a ”systematic” manner

I Make it possible to evaluate order n even with n > 2
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Characterization using a random signal

Order determination by means of QID test

Consider N measures: u(i) and y(i), i = 1, . . .N.

Information matrix Qi at step i is built according to:

Qi =
1

N

N−i∑
k=i



u(k)
u(k + 1)
u(k − 1)
u(k + 2)

...
u(k − i + 1)

u(k + i)


(

y(k + 1) u(k + 1) . . . y(k + i) u(k + i)
)
.

Qi is a square 2i × 2i matrix.

Qi has full rank for i ≤ n, is almost rank deficient otherwise.
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Characterization using a random signal

Order determination by means of QID test

The quotient of instrumental determinants (QID) is defined by

QID(i) =
|Qi |
|Qi+1|

Procedure
For i = 1, . . . ,M (with n supposed to be less than M)

• Build information matrices Qi and Qi+1,

• Evaluate quotient of instrumental determinants QID(i).

The order of the system is the value of i for which the absolute
value of quotient QID(i) increases suddenly for the first time.
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Part IV

Identification: parameter estimation

techniques
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Outline of Part IV

Estimation by means of a step response

Estimation using a random signal
Off-line estimation procedure
On-line estimation procedure
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Estimation by means of a step response

Estimation by means of a step response
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Estimation by means of a step response

Static gain
Ratio of the output and the input under steady state condition:

K =
Output range

Input range
=

yfin − yinit

ufin − uinit
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Estimation by means of a step response

First-order system

Continuous time

H(s) = K
1

1 + Ts

Discrete time (sampled system)

Choice of the sampling period: 0.25T < ∆ < 1.25T

H(z) = z−1
z Z

[
H(s)

s

]
= K 1−z0

z−z0
with z0 = e−

∆
T
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Estimation by means of a step response

First-order system

Time-constant T can be determined according to:
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Estimation by means of a step response

Second-order system

Continuous time

H(s) = K
1

1 + 2ξ s
ωn

+ ( s
ωn

)2

ξ damping ratio

ωn natural frequency

Discrete time

H(z) =
b1z + b0

z2 + a1z + a0
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Estimation by means of a step response

Second-order system (ctd)

Under-damped second-order system (0 < ξ < 1⇒ overshoot(s))
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Estimation by means of a step response

Second-order system (ctd)

1. Measure overshoot d and deduce D% = d×100
Output range

2. Deduce ξ from expression : D% = 100e−πξ/
√

1−ξ2

3. Deduce ωn from expression of rise time tm or peak time tpeak :
tm = 1

ωn

√
1−ξ2

(π − arccos ξ) tpeak = π

ωn

√
1−ξ2
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Estimation by means of a step response

Second-order system (ctd)

Under-damped second-order system (0 < ξ < 1⇒ overshoot(s))

Discrete time sampled system

H(z) =
b1z + b0

z2 + a1z + a0

I Choice of the sampling period: 0.25 < ωn∆ < 1.25.

I

Denoting α = e−ξωn∆ and ωp = ωn

√
1− ξ2, we have

a0 = α2

a1 = −2α cos(ωp∆)

b0 = α2 + α
[
ξ ωn
ωp

sin(ωp∆)− cos(ωp∆)
]

b1 = 1− α
[
ξ ωn
ωp

sin(ωp∆) + cos(ωp∆)
]
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Estimation by means of a step response

Second-order system (ctd)

Overdamped second-order system (ξ ≥ 1⇒ no overshoot)
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Estimation by means of a step response

Second-order system (ctd)

Overdamped second-order system (ξ ≥ 1)

H(s) = K
(1+T1s)(1+T2s) , with ξ = 1

2
T1+T2√
T1+T2

and ωn = 1√
T1T2
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Estimation by means of a step response

Second-order system (ctd)

Overdamped second-order system (ξ ≥ 1)

Discrete time sampled system

H(z) =
b1z + b0

z2 + a1z + a0

I Choice of the sampling period: 0.25 < ωn∆ < 1.25.

I

Denoting z1 = e−∆/T1 and z2 = e−∆/T2 , we have
a0 = z1z2

a1 = −(z1 + z2)

b0 = K (z1z2 − T1z2−T2z1
T1−T2

)

b1 = K ( 1−T1z1−T2z2
T1−T2

)
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Estimation by means of a step response

n-order system (with n > 2)

Difficult estimation by means of a step response

I Various possible shapes

I Superimposition of responses of first and second order subsystems

Possible approaches

I Approximate the system as a first-order or second-order system

I Use a more sophisticated method (continuation of the course)

I If no overshoot, Strejc’s method can be used
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Estimation by means of a step response

n-order system (Strejc’s method)

I deduce n from ratio T1/T2 and T from ratio T1/T or T2/T
n T1

T
T2
T

T1
T2

3 0,8 3,7 0,22
4 1,42 4,46 0,32
...

...
...

...
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Estimation by means of a step response

Identification from a step response: an example

The data used may be less ”academic” :

I the output of the system can be non-zero before the input step is
applied,

I the step can be applied at a time different from t = 0,

I the gain can be negative,

I there can be noises
S. Lahaye System identification January 3, 2023 58 / 84



Estimation by means of a step response

Identification from a step response: an example (Ctd)

Characterization

I the derivative at the beginning of the response seems to be zero and there is
no overshoot : aperiodic 2nd order system

I there is a delay between the application of the step and the start of the
response
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Estimation by means of a step response

Identification from a step response: an example (Ctd)

Characterization

I Aperiodic 2nd order system

I ideal delay

An adapted continous-time transfer function is :

H(s) = K
1

1 + 2ξ s
ωn

+ ( s
ωn

)2
e−sτ =

K

(1 + T1s)(1 + T2s)
e−sτ
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Estimation by means of a step response

Identification from a step response: an example (Ctd)

Identification

I The delay τ can be easily read: τ = 2 sec.

I The gain K is here negative : K = Yfin−Yinit

Ufin−Uinit
= 0.5−2

1−0 = −1.5
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Estimation by means of a step response

Identification from a step response: an example (Ctd)

Identification

I The delay τ can be easily read: τ = 2 sec.

I The gain K is here negative : K = Yfin−Yinit

Ufin−Uinit
= 0.5−2

1−0 = −1.5
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Estimation by means of a step response

Identification from a step response: an example (Ctd)

Identification

I The tangent is drawn at the inflection point of the output response.

I The intersections with the horizontal lines of initial and final value allow us
to identify T1 and T2. Be careful to exclude the initial delays and the ideal
delay in the measures (the same goes for rise time, peak time,...)
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Estimation using a random signal Off-line estimation procedure

Estimation using a random signal
Estimation by means of a step response
Estimation using a random signal

Off-line estimation procedure
On-line estimation procedure
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Estimation using a random signal Off-line estimation procedure

Off-line estimation procedure

0) Characterization: choice of order n

yM (i + n) = −an−1yM (i + n − 1)− . . .− a0yM (i) + bnu(i + n) + . . .+ b0u(i)

1) Experiment

N measures :

I u(i), i = 1, . . . ,N is the chosen signal applied in input (typically a
PRBS for Pseudo Random Binary Sequence)

I y(i), i = 1, . . . ,N is the measure of the system response
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Estimation using a random signal Off-line estimation procedure

Off-line estimation procedure

0) Characterization: choice of order n
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Estimation using a random signal Off-line estimation procedure

Global procedure estimation

0) Characterization: choice of order n

yM (i + n) = −an−1yM (i + n − 1)− . . .− a0yM (i) + bnu(i + n) + . . .+ b0u(i)

1) Experiment : N measures of u and y

2) Off-line estimation

Find the parameters vector

θ> =
(
a0 . . . an−1 b0 . . . bn

)
such that model output yM(i) is close to y(i) for i = 1, . . . ,N, if u(i) is
applied as input of the model, that is by minimizing output error
ε = y(i)− yM(i).
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Estimation using a random signal Off-line estimation procedure

Ordinary least square method

Notations
I ŷ(i) output estimated by

ŷ(i + n) = −an−1y(i + n − 1)− . . .− a0y(i) + bnu(i + n) + . . .+ b0u(i),

⇐⇒

ŷ(i) = −a0y(i − n)− . . .− an−1y(i − 1) + b0u(i − n) + . . .+ bnu(i),

I ε(i) = y(i)− ŷ(i) the equation error.

Do not confuse
I for output error ε(i), output yM(i) is evaluated by means of previous

values of the model output yM(i−1), . . . , yM(i−n),

I for equation error ε(i), estimated output ŷ(i) is evaluated by means
of previous measures y(i − 1), . . ., y(i − n). Actually, it is this error
that we shall attempt to minimize.
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Estimation using a random signal Off-line estimation procedure

Ordinary least square method
We have ε(i) = y(i)− ŷ(i) with

ŷ(i) = −a0y(i − n)− . . .− an−1y(i − 1) + b0u(i − n) + . . .+ bmu(i).

Hence,

y(i) = ŷ(i) + ε(i)

= −a0y(i − n)− . . .− an−1y(i − 1) + b0u(i − n) + . . .+ bmu(i) + ε(i).

This last equation rewritten for i = n + 1, n + 2, . . .N leads to

y(n + 1) = −a0y(1)− . . .− an−1y(n) + b0u(1) + . . .+ bmu(n + 1) + ε(n + 1)

y(n + 2) = −a0y(2)− . . .− an−1y(n + 1) + b0u(2) + . . .+ bmu(n + 1) + ε(n + 2)

...

y(N) = −a0y(N − n)− . . .− an−1y(N + 1) + b0u(N − n) + . . .+ bmu(N) + ε(N)
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Estimation using a random signal Off-line estimation procedure

Ordinary least square method

The obtained set of equations for N measures can be written in a matrix
form as



y(n + 1)
y(n + 2)

.

.

.

.

.

.
y(N)


︸ ︷︷ ︸

Y

=



−y(1) . . . −y(n) u(1) . . . u(n + 1)
−y(2) . . . −y(n + 1) u(2) . . . u(n + 2)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
−y(N − n) . . . −y(N − 1) u(N − n) . . . u(N)


︸ ︷︷ ︸

Φ



a0
a1

.

.

.
an−1

b0

.

.

.
bn


︸ ︷︷ ︸

θ

+



ε(n + 1)
ε(n + 2)

.

.

.

.

.

.
ε(N)


︸ ︷︷ ︸

ε

Where the n first data are considered as initial conditions.
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Ordinary least square method

To estimate θ, a quadratic criterion is selected. It is equal to the sum of
squared errors ε(i) :

J(θ) =
N∑

i=n+1
ε2(i) = ε> · ε

= (Y − Φθ)> · (Y − Φθ)
= (Y> − θ>Φ>) · (Y − Φθ)
= Y>Y − Y>Φθ − θ>Φ>Y + θ>Φ>Φθ

Φ>Φ is assumed to be invertible and J(θ) can then be written (as a sum
of two terms with one which does not depend on θ) :

J(θ) =
(
θ − (Φ>Φ)−1Φ>Y

)>
Φ>Φ

(
θ − (Φ>Φ)−1Φ>Y

)
+Y>

(
I− Φ(Φ>Φ)−1Φ>

)
Y
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Estimation using a random signal Off-line estimation procedure

Ordinary least square method

J(θ) =
(
θ − (Φ>Φ)−1Φ>Y

)>
Φ>Φ

(
θ − (Φ>Φ)−1Φ>Y

)
+Y>

(
I− Φ(Φ>Φ)−1Φ>

)
Y

J(θ) is minimum if the term(
θ − (Φ>Φ)−1Φ>Y

)>
Φ>Φ

(
θ − (Φ>Φ)−1Φ>Y

)>
is equal to zero, that is

θ̂ = (Φ>Φ)−1Φ>Y
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Ordinary least square method

The implementation of the method can be broken down into the following
steps :

1. Formulate the model as a ”standard” difference equation

yM (i + n) = −an−1yM (i + n − 1)− . . .− a0yM (i) + bnu(i + n) + . . .+ b0u(i)

A change of variable, if necessary, should make it possible that the
oldest iterate of u is indexed by i .

2. Identify n.

3. Build matrices Y and Φ.
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Estimation using a random signal Off-line estimation procedure

Ordinary least square method

4. Parameters are estimated using formula θ̂ = (Φ>Φ)−1Φ>Y .

5. Criterion J(θ̂) is evaluated to validate or to reject the estimation.
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Estimation using a random signal
Estimation by means of a step response
Estimation using a random signal

Off-line estimation procedure
On-line estimation procedure
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On-line estimation procedure

Principle

Parameters θ are estimated iteratively using input and output measures
acquired up to the current instant.
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On-line estimation procedure

g
-

-

?

6

.�
�
�
�
�
��7

6

-

�

�

u(i)
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Figure: Principle of the on-line parameters estimation
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On-line estimation procedure

Advantages

The estimation is then done ”on the fly”, and this approach is the only
one to be valid if the identification

I is used for adaptative control;

I is used for time-varying processes (non-stationary).

 This method enables us to update the estimation of parameters along
the process evolution.
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Estimation using a random signal On-line estimation procedure

Problem

Having evaluated parameters vector θ̂j by means of j measures

θ̂j = (Φ>j Φj )
−1Φ>j Yj

How to obtain, consecutively to a new measure y(j + 1),

the new vector θ̂j+1?

This iterative method is said to be recursive since it enables us to
evaluate θ̂j+1 without starting from scratch calculus

(Φ>j+1Φj+1)−1Φ>j+1Yj+1 but by means of a calculus implying θ̂j and a
correction taking into account additional measure y(j + 1).
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Estimation using a random signal On-line estimation procedure

Notations

Φj =


ϕ(n + 1)
ϕ(n + 2)

...
ϕ(j)

 =


−y(1) . . . −y(n) u(1) . . . u(n + 1)
−y(2) . . . −y(n + 1) u(2) . . . u(n + 2)

...
...

...
...

...
...

−y(j − n) . . . −y(j − 1) u(j − n) . . . u(j)


Φj+1 =

(
Φj

ϕ(j + 1)

)

Yj =


y(n + 1)
y(n + 2)

...
y(j)


Yj+1 =

(
Yj

y(j + 1)

)
.
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Estimation using a random signal On-line estimation procedure

Recursive least square method

Taking into account the (j + 1)-th measure, θ̂j+1 can be written:

θ̂j+1 = (Φ>j+1Φj+1)−1Φ>j+1Yj+1

=

((
Φj

ϕ(j + 1)

)> (
Φj

ϕ(j + 1)

))−1 (
Φj

ϕ(j + 1)

)> (
Yj

y(j + 1)

)
=

[
Φ>j Φj + ϕ>(j + 1)ϕ(j + 1)

]−1
(Φ>j Yj + ϕ>(j + 1)y(j + 1))

The idea is to show the relation between θ̂j+1 and θ̂j in this expression.

The algorithm

For each measure j :

Pj+1 = Pj − Pjϕ
>(j + 1)

[
ϕ(j + 1)Pjϕ

>(j + 1) + 1
]−1

ϕ(j + 1)Pj

θ̂j+1 = θ̂j + Pj+1ϕ
>(j + 1)

[
y(j + 1)− ϕ(j + 1)θ̂j

]
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Estimation using a random signal On-line estimation procedure

Remarks

Pj+1 = Pj − Pjϕ
>(j + 1)

[
ϕ(j + 1)Pjϕ

>(j + 1) + 1
]−1

ϕ(j + 1)Pj

θ̂j+1 = θ̂j + Pj+1ϕ
>(j + 1)

[
y(j + 1)− ϕ(j + 1)θ̂j

]

Remark 1

?

6

�-

?

6

� -

� -

?
6ouk

k

k

k

1

1 ϕ(j) ou ϕ(j + 1)

θ̂j+1

θ̂j

Pj ou Pj+1

ϕ(j + 1)Pjϕ
>(j + 1) is a scalar ⇒ no matrix inversion is needed!
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?

6

�-

?

6

� -
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?
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k
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1
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Estimation using a random signal On-line estimation procedure

Remarks (ctd)

Pj+1 = Pj − Pjϕ
>(j + 1)

[
ϕ(j + 1)Pjϕ

>(j + 1) + 1
]−1

ϕ(j + 1)Pj

θ̂j+1 = θ̂j + Pj+1ϕ
>(j + 1)

[
y(j + 1)− ϕ(j + 1)θ̂j

]

Remark 2
It should be clear that θ̂j+1 is deduced from the preceding value θ̂j and
from a correction term which takes into account the new measure.
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Remarks (ctd)
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Estimation using a random signal On-line estimation procedure

Remarks (ctd)

Pj+1 = Pj − Pjϕ
>(j + 1)

[
ϕ(j + 1)Pjϕ

>(j + 1) + 1
]−1

ϕ(j + 1)Pj

θ̂j+1 = θ̂j + Pj+1ϕ
>(j + 1)

[
y(j + 1)− ϕ(j + 1)θ̂j

]

Remark 3
An oversight factor of the formest values can be added. It is denoted λ:

Pj+1 =
Pj − Pjϕ

>(j + 1)
[
ϕ(j + 1)Pjϕ

>(j + 1) + λ
]−1

ϕ(j + 1)Pj

λ

The value λ = 0.95 makes it possible a fast oversight and, as a
by-product, the pursuit of a strong instationarity.
Classically, 0.95 ≤ λ ≤ 0.99.
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Estimation using a random signal On-line estimation procedure

Remarks (end)

Pj+1 = Pj − Pjϕ
>(j + 1)

[
ϕ(j + 1)Pjϕ

>(j + 1) + 1
]−1

ϕ(j + 1)Pj

θ̂j+1 = θ̂j + Pj+1ϕ
>(j + 1)

[
y(j + 1)− ϕ(j + 1)θ̂j

]

Remark 4
As any recurrence, it must be initialized (values of θ̂0 and P0). One shall
consider:

θ̂0 =


0
...
...

0

 and P0 = α


1 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1


with α very large. If we have information on the value of θ̂0, a lower value
can be considered for α.
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