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Foreword

This course is intended for students in the third year of Polytech Angers, option Automation and Computer Engineering.
It is in the continuity of the ”Modelling and simulation” module (3rd year), and as a preamble to the Advanced control
modules (in 4th and 5th year).
It is assumed that the students have taken an introductive course about control theory in their previous years of study. In
particular, the following notions on linear systems in continuous time are considered to be assimilated by the student :

• input-output representations : impulse response and transfer function ;

• dynamic and static accuracy ;

• conditions and criteria for stability.
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Chapter 1

Introduction

1.1 Introduction

Control theory is a science that deals with the modelling, analysis, identification and control of dynamic systems. A common
goal is to achieve control of systems: for example, to tune inputs so that outputs have pre-determined values (set point),
while satisfying certain criteria (sensitivity or insensitivity to certain inputs, precision, ...). To do this, we use a dynamic
model of the systems, i.e. a mathematical description (for example, differential equations) of the dynamic behaviour of the
system.
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Figure 1.1: Scheme of a system and its model

There are two possible approaches to get a model :

• from the knowledge of the phenomena involved (laws of Physics, Chemistry, Biology,...) we build the model by writing
conservation equations (mass, moment, energy,...), balance equations... This activity is generally called modelling, and
one then obtains so-called ”knowledge” or ”phenomenological” models.

• From experimental data (measurements of certain quantities within the system, usually subjected to selected excita-
tions), a mathematical model is extrapolated. This activity is rather called identification, and we obtain representational
models or behavioural models.

The first part of this course will be dedicated to identification techniques (a course was dedicated to modelling
in the first semester).

The history of automatic control began a little before 1930 with the development of the theory of so-called frequency
control. The models manipulated are of the input-output type (in the diagram above, only the signals u, b and y are
considered) and often take the form of transfer functions. From 1960 onwards, the notion of state emerges (by defining in
the above diagram, the x signal) and many techniques have been developed using the state representation as a model of the
system.

The second part of this course will be dedicated to the state representation of systems. The second part of
the course will be dedicated to the state representation of systems, including the state feedback control and
the state reconstruction.

1
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• A system (and its model) is said to be deterministic if for each input u(t), there is only one possible output y(t). On
the contrary, in a non-deterministic or stochastic model, there are several possible outputs, each of them being assigned
a certain probability.

• A system (and its model) is said to be linear, if the superposition principle applies:

S (k1 · u1(t) + k2 · u2(t)) = k1 · S(u1(t)) + k2 · S(u2(t)) .

• A system (and its model) is said to be stationary if the relations between the input and the output are independent of
time (the characteristics of the system are invariant in time).

• A system (and its model) is said to be causal if the value of the output at a time t0, y(t0), does not depend on the
values of the values of u(t) for t > t0 (all physical systems are causal).

In this course we restrict our attention to deterministic, linear, stationary and causal systems.

January 2, 2023 2 "Control theory Manuscript_2122".tex



Chapter 2

Identification of continuous systems

2.1 Introduction

Identification consists in determining a mathematical description (a model) of a process from experimental data.

2.1.1 Position of the problem

We are interested here only in linear models: this assumption is ”classical” and not very restrictive (a non-linear system
considered around an operating point approaches well as a linear system).
There are two classes of linear models:

• the nonparametric models : for example, the impulse response which establishes a sequence of points (theoretically
infinite) corresponding to the response of the system to an impulse (physically impossible to generate perfectly),

• the parametric models : differential equations (in continuous time), difference equations (in discrete time), transfer
functions with a finite number of parameters.

We restrict ourselves here to parametric models 1. Moreover, we limit ourselves to mono-variable systems (a single input
and a single output).

The problem can then be summarised as follows

- -
u

S
y

Measure of the responseChosen test signal

S linear and single-input single-output

Choice of a parametric model of S?

1The reader can refer for example to [Borne et al.] for an account of non-parametric identification methods such as deconvolution and correlation
methods

3
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2.1.2 Reminders on continuous and discrete time models of linear systems

DISCRETE TIME CONTINUOUS TIME

C
o
n
vo

lu
ti

o
n

y(k) = (h ∗ u)(k)

=
k∑
i=0

h(i)u(k − i)

y(t) = (h ∗ u)(t)

=
t∫

0

h(τ)u(t− τ)dτ

T
ra

n
sf

er
F

u
n

ct
.

H(z) = bnz
n+bn−1z

n−1+...+b1z+b0
zn+an−1zn−1+...+a1z+a0

Z[h(k)] = H(z)

Y (z) = H(z)U(z)

H(s) = bns
n+bn−1s

n−1+...+b1s+b0
sn+an−1sn−1+...+a1s+a0

L[h(t)] = H(s)

Y (s) = H(s)U(s)

D
iff

.
E

q
.

y(k + n) + an−1y(k + n− 1) + . . .+ a0y(k)
= bnu(k + n) + bn−1u(k + n− 1) + . . .+ b0u(k)

I.C. y(0), y(1), . . . , y(n− 1)

y(n) + an−1y
(n−1) + . . .+ a1ẏ + a0y

= bnu
(n) + bn−1u

(n−1) + . . .+ b1u̇+ b0u
I.C. y(0+), ẏ(0+), . . . , y(n−1)(0+)

Remarks 1

• As stated in the previous subsection, only parametric models are considered, and the impulse response (recalled above
in the convolution representation) is not mentioned again in the following.

• In the literature, it is common to distinguish in the transfer function the degree of the polynomial in the numerator
(with coefficients noted bi) from that of the polynomial in the denominator (with coefficients noted ai). They are often
called respectively the degree and the order of the system. The order is higher (often strictly with bn=0 above) than the
degree to express the causality of the system. Here, we consider the most general case where the degree is possibly equal
to the order n.

• It is recalled that it is possible to switch from one representation to another by means of an appropriate transformation.
In particular, if a model is available in the form of a continuous time transfer function, it is possible to derive a
differential equation (using an inverse Laplace transform). Conversely, one can go from a differential equation to a
transfer function.

• In many cases, a discrete time system corresponds to a sampled and blocked continuous system studied from a com-
puter (as schematised in figure 2.1). This processing chain will be detailed in this material when we study the state
representation of sampled systems.

January 2, 2023 4 "Control theory Manuscript_2122".tex
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Figure 2.1: Continuous system studied as a discrete-time system by means of a calculator

2.1.3 Approach to identification

There are two main stages in the identification work:

1. the first is to fix the form of the equations: this is the characterisation discussed in the section 2.2,

2. the second is to find the numerical values of the coefficients involved in these equations: this is the estimation of the
parameters discussed in the sections 2.3 and 2.4. These numerical values are determined so that the behaviour of the
model is as close as possible to that of the system: this ”closeness” is measured using a ”criterion”.

2.2 Characterisation

The purpose of the characterisation is to fix the structure of the model. We are interested here only in parametric models
of monovariable linear systems and we have recalled in subsection 2.1.2 the possible models. From these, it appears that
the characterisation problem then boils down to choosing a value for n involved in the transfer function and the differential
equations.

2.2.1 Characterisation using a step response

We recall here some elements, often well known, which allow to characterize a system from observations on its response to a
step.

First order system The step response of a first-order system (example shown in Figure 2.2) is characterised by a non-zero
derivative at the time the system starts to respond. There is also a lack of overshooting of the final value, but this does not
identify a system of order 1 since systems of order higher than 1 can also exhibit this characteristic (see following paragraphs).

January 2, 2023 5 "Control theory Manuscript_2122".tex
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Figure 2.2: Step response of a first order system

2nd order system The step response of a second order system (two examples are shown in Figure 2.3) is characterised
by zero derivative at the moment the system starts to respond. In addition, it is possible (but not necessary!) that there is
an overshoot of the final value.
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Figure 2.3: Step responses of second order systems

Systems of order greater than 2 If the order of the system is strictly greater than two, then it is rather complicated
to determine the order from the step response because the shape of this curve can be very diverse. Indeed, the response of
such a system can be seen as the superposition of the responses of subsystems of order one and two. The response of the
system is generally marked by some of its poles which are said to be dominant and which correspond to high time constants
or low damping (slow or very oscillatory temporal response). Two approaches can be considered:

• approach the system as a first or second order system by assimilating it to the dominant pole(s),

January 2, 2023 6 "Control theory Manuscript_2122".tex
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• use a more ”elaborate” characterisation method to accurately determine the order of the system (in this manuscript,
a method is presented in paragraph 2.2.2 which can be used for this purpose).

Ideal delay There are systems (usually with ”slow dynamics”, such as certain thermal or hydraulic systems) for which
there is a delay between the input excitation time and the output reaction time of the system. We have plotted on the Figure
2.4 the step response of a delayed first order system.

Figure 2.4: Step response of a delayed first order system

If we note τ the value of the observed ideal delay, and r is the number of discrete steps translating the pure delay τ , we
obtain the following transfer functions for a system of order n:

DISCRETE TIME CONTINUOUS TIME

H(z) = bnz
n+bn−1z

n−1+...+b0
zn+an−1zn−1...+a0

z−r H(s) = bns
n+bn−1s

n−1+...+b0
sn+an−1sn−1+...+a0

e−sτ

For a sampled system, we take r = bτ/∆c where ∆ denotes the sampling period and b·c is the default integer part.
Considering the transfer function in discrete time, we can see that:

H(z) = bnz
n+bn−1z

n−1...+b0
zn+an−1zn−1+...+a0

z−r

= bnz
n+bn−1z

n−1+...+b0
zn+r+an−1zn+r−1+...+a0zr

= βn+rz
n+r+βn+r−1z

n+r−1+...+β0

zn+r+αn+r−1zn−1+r+...+α1z+α0
,

with

• βn+r = . . . βn+1 = 0 and βn = bn, . . ., β0 = b0,

• αn+r−1 = an−1, . . ., αr = a0 and αr−1 = . . . = α0 = 0.

From a formal point of view, a system of order n with r ideal delays can be studied as a system of order
n+ r (with some zero coefficients).

January 2, 2023 7 "Control theory Manuscript_2122".tex
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2.2.2 Characterization using a random signal: quotient of instrumental determinants (QID)
test

In the previous paragraphs, it was recalled how to recognise first and second order systems from their step response. This
procedure leaves room for the ”engineer’s appreciation” since he has to interpret curves. On the contrary, we present a test
which ”mechanically” allows us to determine the value of n, i.e. the order of a system (or the sum of the order and the
number of possible pure delays). Furthermore, this test does not require the use of a step as input, but rather a random
signal.
The quotient of instrumental determinants (QID) test is essentially based on the rank conditions of a matrix, called infor-
mation matrix, containing the pairs of input-output measurements. For this purpose, it is considered that N measurements
of the applied input u(i) and the output response y(i) have been made, i = 1, . . . N , the information matrix Qi at step i is
written :

Qi =
1

N

N−i∑
k=i



u(k)
u(k + 1)
u(k − 1)
u(k + 2)

...
u(k − i+ 1)
u(k + i)


(
y(k + 1) u(k + 1) . . . y(k + i) u(k + i)

)
. (2.1)

Note that Qi is a square matrix of dimension 2i × 2i. The information matrix Qi+1 at step i + 1 is constructed from the
matrix Qi :

Qi+1 =
1

N

N−(i+1)∑
k=i+1



u(k)
u(k + 1)
u(k− 1)
u(k + 2)

...
u(k− i + 1)

u(k + i)
u(k − i)

u(k + i+ 1)


(

y(k + 1) u(k + 1) . . . y(k + i) u(k + i) y(k + i+ 1) u(k + i+ 1)
)
,

with Qi+1 a square matrix of dimension (2i+ 2)× (2i+ 2).
The structure of the information matrix is ”nested”, because, for example, the matrix Q2 contains all the elements of the
matrix Q1 :

Q2 =
1

N

N−2∑
k=2


u(k)y(k + 1) u(k)u(k + 1) u(k)y(k + 2) u(k)u(k + 2)

u(k + 1)y(k + 1) u(k + 1)u(k + 1) u(k + 1)y(k + 2) u(k + 1)u(k + 2)
u(k − 1)y(k + 1) u(k − 1)u(k + 1) u(k − 1)y(k + 2) u(k − 1)u(k + 2)
u(k + 2)y(k + 1) u(k + 2)u(k + 1) u(k + 2)y(k + 2) u(k + 2)u(k + 2)


The quotient of instrumental determinants (QID) is given by

QID(i) =
|Qi|
|Qi+1|

(2.2)

For each value of i, the procedure for determining the order

• constructs the matrices Qi and Qi+1 defined by (2.1),

• and evaluates the quotient of instrumental determinants defined by (2.2),

• finally, the value of n (order of the system) is the value of i for which the absolute value of the ratio
QID(i) increases rapidly for the first time.

January 2, 2023 8 "Control theory Manuscript_2122".tex
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2.3 Estimation using a step response

2.3.1 Static gain

The static gain is the quotient between the range of the response and the range of the input step (see for example Figure
2.5). The range of the response is measured as the difference between the initial value of the output yinit (before the system
starts to respond to the step) and the final value of the response yend.

Figure 2.5: Measurement of the amplitudes for the estimation of the static gain.

2.3.2 First order system

Recall that the transfer function of a first order is typically written as follows.

• In continuous time:

H(s) = K
1

1 + Ts
.

• In discrete time (sampled process):

H(z) = z−1
z Z

[
H(p)
p

]
= K 1−z0

z−z0

with z0 = e−
∆
T (the sampling period ∆ to be chosen with respect to: 0, 25T < ∆ < 1, 25T ).

January 2, 2023 9 "Control theory Manuscript_2122".tex
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Figure 2.6: Estimation using step response

In the previous paragraph, it was specified how to estimate the static gain K. The other parameter T , called the time
constant, can be estimated from readings of the index response as, for example, shown in Figure 2.6.

2.3.3 2nd order system

Recall that the transfer function of a second order system in continuous time is typically written

H(s) = K
1

1 + 2ξ s
ωn

+ ( s
ωn

)2
.

with

ξ damping ratio

ωn natural frequency

For the estimation of these parameters, two cases are distinguished:

• if the system is resonant and damped (0 < ξ < 1), we obtain a step response of the type shown in the figure 2.7, and by
noting the overshoot d and the rise time tm (or peak time tpic) on the curve, the parameters ξ and ωn can be estimated
using the following relationships:

Overshoot (as a percentage of the response amplitude) D% = d×100
response amplitude = 100e−πξ/

√
1−ξ2

Rise time tm = 1

ωn
√

1−ξ2
(π − arccos ξ)

Peak time tpic = π

ωn
√

1−ξ2

January 2, 2023 10 "Control theory Manuscript_2122".tex
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Figure 2.7: Step response of a damped second order resonant system.

• if the system is aperiodic (ξ ≥ 1), we obtain a step response of the type represented on the figure 2.8.
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Figure 2.8: Step response of an aperiodic second order system.

The transfer function can be written as:

H(s) =
K

(1 + T1s)(1 + T2s)
,

with

January 2, 2023 11 "Control theory Manuscript_2122".tex



Polytech Angers - 3A SAGI Control theory S. Lahaye

ξ = 1
2
T1+T2√
T1T2

and ωn = 1√
T1T2

The tangent at the inflection point can be drawn to obtain an approximate value for T1 and T2 (see Figure 2.9), and
thus, we can estimate ξ and ωn.

Figure 2.9: Method to obtain the values of T1 and T2 for an aperiodic second order.

Recall that in discrete time, the transfer function of a second order is typically written

H(z) =
b1z + b0

z2 + a1z + a0

with the sampling period chosen such that 0.25 < ωn∆ < 1.25 for a sampled process.
We have the following relationships:

if ξ < 1 if ξ ≥ 1

noting α = e−ξωn∆, ωp = ωn
√

1− ξ2 noting z1 = e−∆/T1 , z2 = e−∆/T2 ,

a0 = α2 a0 = z1z2

a1 = −2α cos(ωp∆) a1 = −(z1 + z2)

b0 = α2 + α
[
ξ ωnωp sin(ωp∆)− cos(ωp∆)

]
b0 = K(z1z2 − T1z2−T2z1

T1−T2
)

b1 = 1− α
[
ξ ωnωp sin(ωp∆) + cos(ωp∆)

]
b1 = K( 1−T1z1−T2z2

T1−T2
)
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2.3.4 Systems of order greater than 2, Strejc method

As with characterisation, it can be complicated to estimate a system of order greater than 2 using only its step response (as
this can take many different forms). In particular, if this step response does not show any overshoot, then there are methods
such as the one of Strejc and the one of Bröıda which allow to realize the estimation. They can be seen as generalisations of
the method proposed above for an aperiodic second order. We explain here briefly the Strejc method.

This method can be applied to systems whose step response does not exhibit overshoot. They are identified with a
transfer function of the form:

H(s) =
K

(1 + Ts)n

The parameters to be estimated are therefore:

• the static gain K (referring to the paragraph above),

• the order n and the time constant T (estimated using the method below).

The method can be broken down into the following steps:

1. The tangent at the inflection point is drawn to determine two values T1 and T2 (as shown in Figure 2.9)

2. The order n is deduced of the value of T1

T2
using the table below. Between two lines of the table, we choose the smallest

value of n.

3. The time constant T is determined from the value of T1

T or T2

T in the table below.

n T1

T
T2

T
T1

T2

3 0,8 3,7 0,22
4 1,42 4,46 0,32
5 2,10 5,12 0,41
6 2,81 5,70 0,49

2.4 Estimation using a response to a random signal

In order to estimate the parameters of a model using a response to a random signal, there are two types of procedures,
so-called ”off-line” and ”on-line”, which can be described as follows.

I) Offline procedure
The following experiment is considered:

- -
u(i) y(i)

Continuous System + ZOH + Converters

i = 1, . . . , N (N measures)

known input measured response
S

u is chosen to excite the process in its full bandwidth.
Typically, a Pseudo-Random Binary Sequence (PRBS) is applied, the spectrum of which is close to that of white noise

(energy equispaced over all frequencies).

We wish to build a M model from these data :

(a) A structure was chosen for M during the characterisation. This will be a difference equation (or equivalently the
transfer function in Z) :

yM (i+ n) = −an−1yM (i+ n− 1)− . . .− a0yM (i) + bnu(i+ n) + . . .+ b0u(i) (2.3)
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(b) We now wish to establish the vector of parameters

θ =



a0

...
an−1

b0
...
bn


(2.4)

such that the output of the model yM (i) is close to y(i) for i = 1, . . . , N , if we apply as input to the model u(i).

In order to qualify the quality of the parameters chosen for the model, we will use a criterion J to minimize. It
is defined from the output error ε:

k
-

-

-
?

6
u(i)

yM (i)

+

y(i)

−
ε(i)

output error

S

M

Figure 2.10: Output error

And this criterion J is therefore a function of the parameters:

J(θ) = f(ε) .

In paragraph 2.4.1, we will present such an off-line estimation procedure called ordinary least squares method and
well known for its efficiency. In the literature, we can find other off-line methods of parametric estimation, in
particular the maximum likelihood method or the pointing principle method.

I) Online procedure
One can also implement an ”on-line” procedure for estimating the parameters. More precisely, at each time i the
parameters θ are estimated iteratively from the applied inputs and the output measurements up to that time. The
estimation is done in a sort of ”run of the mill” manner and we then have the following diagram:
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k
-

-

?

6
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�
�
�
�
�
�
�
��7

6

-
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�

u(i)

ŷ(i)

+

y(i)

−
ε(i)

S

M

Criterion

computation

parameters
of the

Optimization

equation error

Figure 2.11: Principle for online parameter estimation

This is the only valid approach if the identification is used in adaptive control or on time-varying (non-stationary)
processes: the parameter estimate can be updated as the process behaviour evolves.
In paragraph 2.4.2, the recursive least squares method will be presented to illustrate this approach.

2.4.1 Ordinary least squares (offline) method

Suppose we have N pairs of measurements (inputs u(i), outputs y(i)) of the process. Ideally, these data should be such that

y(i) = ŷ(i)

with ŷ(i) the output estimated by

ŷ(i+ n) = −an−1y(i+ n− 1)− . . .− a0y(i) + bnu(i+ n) + . . .+ b0u(i),

and θ> =
(
a0 . . . an−1 b0 . . . bn

)
the estimated parameters.

More realistically, we have

y(i) = ŷ(i) + ε(i)

where ε(i) = y(i) − ŷ(i) is called the equation error. Note that for the output error, ε(i), the output yM (i) is calculated
using the previous outputs of the model yM (i − 1), . . . , yM (i − n), while for the equation error, ε(i), the estimated output
ŷ(i) is calculated using the previous measurements y(i− 1), . . ., y(i− n). For the set of N measurements, we can group the
equations in the matrix form :



y(n+ 1)
y(n+ 2)

.

.

.

.

.

.
y(N)


︸ ︷︷ ︸

Y

=



−y(1) . . . −y(n) u(1) . . . u(n+ 1)
−y(2) . . . −y(n+ 1) u(2) . . . u(n+ 2)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

−y(N − n) . . . −y(N − 1) u(N − n) . . . u(N)


︸ ︷︷ ︸

Φ



a0

a1

.

.

.
an−1

b0
.
.
.
bn


︸ ︷︷ ︸

θ

+



ε(n+ 1)
ε(n+ 2)

.

.

.

.

.

.
ε(N)


︸ ︷︷ ︸

ε
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To estimate θ, we choose a quadratic criterion that represents the sum of the squares of the ε(i) errors:

J(θ) =
N∑

i=n+1

ε2(i)

= ε> · ε
= (Y − Φθ)> · (Y − Φθ)
= (Y > − θ>Φ>) · (Y − Φθ)
= Y >Y − Y >Φθ − θ>Φ>Y + θ>Φ>Φθ

We assume that the matrix Φ>Φ is invertible2. The expression of J(θ) can then be put in the form of two terms of which
one is independent of θ, namely :

J(θ) =
(
θ − (Φ>Φ)−1Φ>Y

)>
Φ>Φ

(
θ − (Φ>Φ)−1Φ>Y

)
+ Y >

(
I− Φ(Φ>Φ)−1Φ>

)
Y

From this expression, we see that J(θ) is minimum if the number
(
θ − (Φ>Φ)−1Φ>Y

)>
Φ>Φ

(
θ − (Φ>Φ)−1Φ>Y

)>
is zero,

i.e.

θ = θ̂ = (Φ>Φ)−1Φ>Y (2.5)

Methodology for applying the ordinary least squares method

The following methodology will be followed systematically:

1. We start by formulating the chosen model in the form of a difference equation identical to the equation (2.3), i.e.

yM (i+ n) = −an−1yM (i+ n− 1)− . . .− a0yM (i) + bnu(i+ n) + . . .+ b0u(i)

At the cost of a possible change of variable, the difference equation is formulated so that the oldest iterate of u has
index i.

2. In this equation, we identify n, and we can formulate the estimated output

ŷ(i+ n) = −an−1y(i+ n− 1)− . . .− a0y(i) + bnu(i+ n) + . . .+ b0u(i).

3. We construct the matrices Y and Φ.

4. The parameters are estimated from the formula θ̂ = (Φ>Φ)−1Φ>Y .

5. The criterion J(θ̂) is evaluated to validate or question the estimate.

2.4.2 Recursive least squares (online) method

The ordinary least squares identification method requires all measurements to be completed before the parameter vector θ̂
can be estimated.

We present here its ”on-line” adaptation to re-actualise the value of the parameters after each new acquisition. In other
words, we have the following problem

Having calculated a vector of parameters θ̂j from j measurements

θ̂j = (Φ>j Φj)
−1Φ>j Yj

How, after a new measure y(j + 1),

obtain the new vector θ̂j+1, knowing θ̂j ?

2In other words Φ>Φ is of full rank and the vectors which compose its columns are not collinear. Note that this hypothesis is not verified if
the values of the input u(i); i = 1, 2, . . . , N are constant. This implies that the method cannot in particular be applied from a set of experimental
data corresponding to an step response of the system.
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This iterative method is called ”recursive” because it makes it possible to calculate θ̂j+1 without repeating the whole

calculation (Φ>j+1Φj+1)−1Φ>j+1Yj+1 but expressing it using θ̂j and a correction taking into account the additional measure
y(j + 1).

Let us note

Φj =


ϕ(n+ 1)
ϕ(n+ 2)

...
ϕ(j)

 =


−y(1) . . . −y(n) u(1) . . . u(n+ 1)
−y(2) . . . −y(n+ 1) u(2) . . . u(n+ 2)

...
...

...
...

...
...

−y(j − n) . . . −y(j − 1) u(j − n) . . . u(j)


Φj+1 =

(
Φj

ϕ(j + 1)

)

Yj =


y(n+ 1)
y(n+ 2)

...
y(j)


and

Yj+1 =

(
Yj

y(j + 1)

)
.

The vector θ̂j+1, taking into account the (j + 1)-th measurement, is written:

θ̂j+1 = (Φ>j+1Φj+1)−1Φ>j+1Yj+1

=
[
Φ>j Φj + ϕ>(j + 1)ϕ(j + 1)

]−1
(Φ>j Yj + ϕ>(j + 1)y(j + 1))

The idea is to make appear in this expression a relation between θ̂j+1 and θ̂j . Some (rather ”heavy”) manipulations allow
to obtain the following result :

θ̂j+1 = θ̂j + Pj+1ϕ
>(j + 1)

[
y(j + 1)− ϕ(j + 1)θ̂j

]
(2.6)

with

Pj+1 = Pj − Pjϕ>(j + 1)
[
ϕ(j + 1)Pjϕ

>(j + 1) + 1
]−1

ϕ(j + 1)Pj (2.7)

Remarks 2

• Let us note k = n+ n+ 1, the dimensions of the vectors and matrices involved are :

?

6

� -

?

6

� -

� -

?

6
or Pj or Pj+1ϕ(j) or ϕ(j + 1)

θ̂j

θ̂j+1

k

k

k

k

1

1

We can underline that ϕ(j + 1)Pjϕ
>(j + 1) is a scalar, and that the algorithm does not require any matrix inversion

(only products between matrices, row and column vectors).

• In the equation (2.6), it is clear that θ̂j+1 is deduced from the previous value θ̂j and a corrective term which takes
account of the new measurement.
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• It is possible to introduce into the equation (2.7) a forgetting factor λ which characterises the progressive forgetting of
the oldest measurements :

Pj+1 =
Pj − Pjϕ>(j + 1)

[
ϕ(j + 1)Pjϕ

>(j + 1) + λ
]−1

ϕ(j + 1)Pj

λ
(2.8)

This factor is useful when one seeks to identify a system whose parameters vary strongly over time (a so-called non-
stationary system). Typically, the value λ = 0, 95 allows a fast forgetting and thus a pursuit of a strong instationnarity.
Classically, 0.95 ≤ λ ≤ 0.99.

• As for any recurrence, it must be initialized (values of hat and P0). In the absence of information a priori on the
values of the vector of the parameters, one can take :

θ̂0 =


0
...
...
0

 and P0 = α


1 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1


with α very large. If we have information on θ̂0, we will take a lower value of α.
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Chapter 3

State representation of linear systems

3.1 Introduction and background

In the following, concepts and results based on the state representation of linear systems are introduced. To illustrate this,
the same example will be considered throughout the material.

Example 1 We are interested in the anti-swinging system on harbour cranes such as those shown in the photo in Figure
3.1. Crane operators must manage the useful movement of the load and control unwanted load swing. This skill requires a
great deal of experience. Manufacturers who use cranes extensively are looking for ways to assist in operating them, or even
to automate them completely. Relieving the crane operator of the delicate task of compensating for load swinging is sure to
increase productivity and allow the operator to concentrate on safety. It also means standardising movements, avoiding high
mechanical stress and therefore reducing maintenance costs. Various crane manufacturers and equipment suppliers have filed
patents on this issue. Port cranes are mainly targeted by these anti-swinging techniques, thanks to the good knowledge of
the mechanical model (displacement with fixed cable length, 1D motion sequence, known volume and shape of the containers,
. . .).

Figure 3.1: Port crane: container crane
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In this example, we focus on the horizontal movement of the trolley-cable-container assembly (the lifting is considered
to be stopped). More precisely, we will try to control the horizontal speed of the container while avoiding its swinging. For
didactic purposes, the following simplifying assumptions are made (see figure 3.2) :

• The trolley-cable-container assembly can be modelled as a pendulum whose attachment point moves.

• Consider the reference frame (O,−→x ,−→y ) linked to the crane frame.

• The trolley has a sliding connection with the crane’s boom to perform the distribution movement.

• Given the accelerations involved, the cables, which have negligible mass, are assimilated to a single link forming an
undeformable solid with the load, in pivotal connection with the carriage.

• The container is assimilated to a point mass placed at the centre of gravity.

• Friction is neglected.

Figure 3.2: trolley-cable-container assembly designed as a pendulum

The constant quantities in the study are:

m container mass
L length of the cables (considered as a non-deformable solid) between the point of attachment

and the centre of gravity of the container
g module of the acceleration of gravity

The variables (function of time) associated with this system will be:

pm,vm, am respectively position, speed and acceleration of the mass (container)
projected along the axis −→x

pc,vc, ac respectively position, speed and acceleration of the trolley
projected along the axis −→x

θ angle between the cables and the vertical (oriented as on the
Figure 3.2 and counted positively in the trigonometric direction)

We will take as our point of view that:

• the input of the system is the horizontal velocity of the trolley vc (at any time t, we can fix the value of vc(t));
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• the output of the system is the horizontal speed vm of the mass (container).

We neglect the perturbations (noises) which can intervene on the system : we could in particular consider the wind (ex-
ternal quantity undergone which has an influence on the sway of the container). As already mentioned above, the objective
will be to control the speed of the mass while avoiding swaying.
This system is deterministic: an input vc leads to a single possible output vm.
This system is causal: the value of the output at a time t0, vm(t0), does not depend on the future of the input vc(t) for t > t0.

We can use the laws of Physics to carry out a modelling of this system. In particular, we will establish the differential
equations governing the evolution of the associated variables (to have a parametric model):

a) The definition of the sine in a right-angled triangle gives us that pc = pm +L sin θ. We can deduce a first relation linking
the speed of the trolley to that of the mass :

vc = vm + L
d sin θ

dt
. (3.1)

b) The mass behaves like a pendulum. The fundamental principle of dynamics applied to the mass and projected along the
−→x axis gives:

mam = T sin θ,

where
−→
T is the pull of the mass on the cables. Since the cables are considered to be non-deformable, the tensile force

−→
T

and the component of the weight along the cable axis cancel out, i.e.:

T = mg cos θ.

This allows us to deduce

mam = mg sin θ cos θ (3.2)

The system modelled by the equations (3.1)-(3.2) is stationary since the values of the parameters involved in these differential
equations (namely m, g and L) are assumed to be constant over time. On the other hand, it is not linear. In order to have a
linear model, we will approximate the behaviour of the system (the model will be less precise but easier to manipulate because
it is linear). In particular, we will consider that the variations of θ are weak and thus that cos θ ≈ 1, sin θ ≈ θ. This leads
to approach the equations (3.1)-(3.2) in the form of the following linear model:

dθ

dt
= − 1

L
vm +

1

L
vc (3.3)

dvm
dt

(= am) = gθ (3.4)

In the following two paragraphs, we recall the notions of stability and precision which will be useful later.

3.1.1 Stability

A linear system is stable if for any bounded input, the corresponding output is bounded.
Equivalently, a system is stable if when the input cancels, the corresponding output tends to zero when t tends to infinity.

Theorem 1 (Stability condition for a system described by a TF) Let a dynamic system be described by its transfer
function H(s). It is stable if, and only if, all the poles of its transfer function H(s) (i.e., the roots of the denominator of
H(s)) have strictly negative real parts.

Example 2 We can guess that the system corresponding to the trolley-cable-container assembly is not stable. Indeed, if a
step is applied to the input, then the input is cancelled, then the oscillations at the output will continue indefinitely (friction
is neglected and the amplitude of the oscillations will not decrease) and the output will not be cancelled asymptotically. We
check that the roots of the polynomial 1 + L

g s
2 (denominator of the transfer function) are ±i

√
g
L . These have not strictly

negative real parts, which confirms that the system is unstable.
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3.1.2 Precision

A controlled linear system with output y(t) is more accurate the smaller the difference between the desired output yd(t) and
the actual output y(t). The accuracy can be measured by :

ε(t) , yd(t)− y(t)

The static accuracy ε0 qualifies the value of this deviation ε(t) when t tends towards infinity (steady state), that is :

ε0 = lim
t→∞

ε(t) .

A distinction is sometimes made between the order of the stationary error. More precisely, the stationary error of order
n, noted εn, is relative to an input of the form U(s) = 1

sn .

3.2 Introduction to state formalism

3.2.1 State representation

In this course, systems (physical, biological, economic processes,...) are described by equations of type:{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(3.5)

under the assumption that time t is continuous (i.e. it takes its values in R).

• The vector u(t) is the input (or command) of the system. Its value can be chosen arbitrarily for any t.

• The vector y(t) is the output of the system that can be measured.

• The vector x(t) is called state of the system. As we will illustrate later, it represents the memory of the system, i.e.
the set of information needed to predict the evolution of the system given the input u(t).

• The matrices A, B, C and D1 are called respectively evolution, control, observation and direct matrices.

• The first of the two equations of (3.5) is called evolution equation. It is a differential equation which allows us to
know where the state x(t) is going to go, knowing its value at the present time t and the command u(t) which we are
currently applying.

• The second equation is called observation equation. It allows the calculation of the output vector y(t) knowing the
state and the command at time t. Unlike the evolution equation, it is not a differential equation.

• The equations (3.5) constitute the state representation of the system2.

• Conventionally, we note n, m and p the respective dimensions of the vectors x, u and y. The dimensions of the matrices
A, B, C and D are therefore n× n, n×m, p× n and p×m respectively.

When the system is studied via a computer, we are not interested in its evolution continuously, but only in discrete
instants of time (synchronised to the processor clock). It is then useful to consider that time takes its k values in Z. We
then use the discrete time state representation in the form of recurrence equations :{

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k)

(3.6)

To be noted 1
Several general remarks on the state representation approach :

• systems are studied in the time domain,

• the treatments use matrix algebra,

• the formalism naturally applies to multi-variable systems (several inputs and/or several outputs).
1In the following, it will often be considered that the matrix D is zero.
2We restrict ourselves to linear systems, i.e. those for which the response to the weighted sum of several excitations is equal to the weighted

sum of the responses to each of the excitations taken separately.
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3.2.2 State variables

Recall that linear systems in continuous time can be represented by their impulse response3 h and then we have the input-
output relationship

y(t) = (h ∗ u)(t)

=
t∫

0

h(τ)u(t− τ)dτ .
(3.7)

Using this representation, it appears that in order to calculate the output at a time t, one needs to know the entire past
(before t) of the system input.

If we consider this time a first order linear system represented by its input-output differential equation:{
ẏ(t)− ay(t) = bu(t)

y(0+) = y0

The solution to this equation is

y(t) = y(0+) · eat +

t∫
0

b · ea(t−x) · u(x)dx

It also appears that in order to calculate the output at a time t, one needs to know the entire past (before t) of the system
input.

On the contrary, from its state representation, the output at time t of the same linear system can be directly deduced
from the knowledge of the state at t. Indeed, the output equation in (3.5) gives y(t) as a linear function of the components
of the state vector x(t). In a way, the value of the state vector summarises all the past behaviour of the system.

Physically, the notion of state can be intuited through the following examples.

Example 3 Let us consider the example of a solid pushed on a horizontal surface. If we consider as input to the system
the external force that pushes the solid. We can be convinced that in order to guess the future position of the solid, it is
not necessary to know the value of the applied force from the beginning of time. The knowledge of the force at the present
moment is sufficient if we also have the current values of the position and the velocity (which translates the kinetic energy of
the system).

Example 4 Let us consider the example of an RLC circuit. If we consider the voltage u(t) delivered by the power supply as
the input of the system, and the current i(t) in the circuit as the output. We can convince ourselves that to determine the
future evolution of the current i(t), it is not necessary to know the value of the applied voltage u(t) from the origin of time.
This information can be replaced by the value of the charge in the capacitor and the value of the flux in the inductor at the
present time. These values (which determine the energy stored in the circuit) constitute the state of the system : they extract
from the past history of the circuit the information necessary to determine the future.

Example 5 Consider the example of a mass attached to a spring and pulled by an external force. If we consider as input to
the system the force pulling the mass. We can convince ourselves that in order to determine the evolution of the position of
the mass, it is not necessary to know the value of the applied force from the origin of time. This information can be replaced
by the value of the position of the mass and its speed at the present moment.

Example 6 Consider again the example of the harbour crane described in the example 1. For this example, u = vc (speed of
the trolley) and y = vm (speed of the mass). One can guess that to determine the evolution of the mass velocity, one can be
satisfied with knowing this velocity (which translates the kinetic energy), the angle θ (which translates the potential energy)
and the future evolution of the trolley velocity (and it is not necessary to know its value since the origin of time).

We therefore choose x =

(
vm
θ

)
. From the equations (3.3) and (3.4), we deduce a state representation of the system: ẋ(t) =

(
0 g
− 1
L 0

)
x(t) +

(
0
1
L

)
u(t)

y(t) =
(

1 0
)
x(t)

.

3The transfer function is the Laplace transform of the impulse response, and we then have the input-output relationship

Y (s) = H(s) · U(s)
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To be noted 2

• The parameters describing the ”energy reservoirs” of the system are generally good state variables of the system.

• We will further explain in the following that the number of state variables (the dimension of the state vector) corresponds
to the order of the system.

3.2.3 Similar state representations

Consider a system represented by its equations of state (3.5) in continuous time. Let P be an invertible square matrix, and
let χ(t) = P−1x(t). If we replace x(t) by Pχ(t) in (3.5), we obtain{

Pχ̇(t) = APχ(t) +Bu(t)
y(t) = CPχ(t) +Du(t)

,

that is, {
χ̇(t) = P−1APχ(t) + P−1Bu(t)
y(t) = CPχ(t) +Du(t)

.

If we now set A′ = P−1AP , B′ = P−1B, C ′ = CP and D′ = D, the previous system of equations is written{
χ̇(t) = A′χ(t) +B′u(t)
y(t) = C ′χ(t) +D′u(t)

(3.8)

The form of the latter equations is identical to that adopted for a state representation (3.5). In other words, a second
state representation for the same system was obtained.

To be noted 3

• In a completely similar way, one can obtain an equivalent state representation for a discrete time system described by
(3.6) (the manipulations used -multiplication by an invertible matrix and its inverse, change of variables- are indepen-
dent of the definition set of the variables).

• A system has as many similar state representations as there are invertible square matrices P .

• The vector χ(t) is also a state vector of the system. The representations are equivalent, but the physical quantities
represented by the state variables are different (except if P is equal to the identity matrix). This observation can be
understood from the example 4: an equivalent state representation is obtained if the state variables of the RLC circuit
are the charge and the current rather than the voltage across the capacitor (proportional to the charge) and the flux in
the inductor (proportional to the current) respectively.

• State trasnsformations (via an invertible matrix) are often used to : facilitate the solution of certain problems or
computations (e.g., evaluating An is easier if A is in a block diagonal form) or favour the study of properties such as
stability, controllability or observability (which we will study later on)

Remark 1 (How do we know if two state representations are equivalent?)
Suppose we have two state representations given by (3.5) and (3.8) that are supposed to represent the same system. The basis
change matrix P which connects these two representations can be obtained by solving the linear system : PA′ = AP

PB′ = B
C ′ = CP

where the n2 unknowns are the coefficients Pij of the matrix P . Solving such a linear system is quite easy, and if no solution
exists, it is clear that the two representations are not equivalent.

January 2, 2023 24 "Control theory Manuscript_2122".tex



Polytech Angers - 3A SAGI Control theory S. Lahaye

3.3 State representation of linear systems in continuous time

3.3.1 From a state representation to an input-output representation

The purpose of this section is to show how to obtain the transfer function of a linear system described by its state repre-
sentation. For this purpose, let us apply the Laplace transform to the evolution and output matrix equations (3.5), which
amounts to applying it to each of the time equations, and then writing the matrix form again. Considering that x(0) = 0{

sX(s) = AX(s) +BU(s)
Y (s) = CX(s) +DU(s)

The first equation can be written as sX(s)−AX(s) = BU(s), or even4 (sI−A)X(s) = BU(s) with I the identity matrix
(matrix of the dimension of A with 1 on the diagonal and 0 everywhere else). Thus, we end up with the equivalent system :{

X(s) = (sI−A)−1BU(s)
Y (s) = CX(s) +DU(s)

The notation (sI − A)−1 is the inverse matrix of sI − A. For small dimensions, it can be calculated ”by hand” (see for
example the reminders of linear algebra in the appendix). One can also use the Scilab software5. The result is

Y (s) =
[
C(sI−A)−1B +D

]
U(s) .

The matrix C(sI − A)−1B + D is the transfer matrix of the system. In the mono-variable case (only one input and one
output), C(sI − A)−1B + D is the transfer function, i.e. a fraction of polynomials in s. Multiplying each member of the
previous equation by the denominator of C(sI − A)−1B + D, and then performing the inverse Laplace transform gives an
input-output differential equation for our system.

Example 7 Consider again the example of the harbour crane described in the example 1 and for which a state representation
was given in the example 6. The transfer function can be obtained from the state representation by applying the formula
H(s) = C(sI−A)−1B. Several intermediate calculation results are given for the application of this formula :

sI−A =

(
s −g
1
L s

)
, |sI−A| = s2 +

g

L
, com(sI−A) =

(
s − 1

L
g s

)
and

(sI−A)−1 =
1

|sI−A|
com(sI−A)> =

1

s2 + g
L

(
s g
− 1
L s

)
.

The result is

H(s) =
g
L

s2 + g
L

=
1

1 + L
g s

2
.

Example 8 Consider a linear system described by the state representation
ẋ(t) =

(
1 3
2 0

)
x(t) +

(
1
1

)
u(t)

y(t) =
(
0 1

)
x(t)

.

The matrix (sI−A)−1 can be calculated from Scilab by typing the following lines :

A=[1 3;2 0];

I=eye(2,2);

s=poly(0,’s’);

(s*I-A)^(-1)

Finally, we obtain the input-output differential equation:

ÿ(t)− ẏ(t)− 6y(t) = u̇(t) + u(t)

4Writing sX(s) −AX(s) = (s−A)X(s) is not correct because s is a scalar while A is a matrix.
5Free numerical computation software that incorporates the common operations of matrix computation. It also offers limited symbolic calculation

functionality, which can be used to calculate (sI−A)−1, see example 8.
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3.3.2 From an input-output representation to a state representation

In this section, we examine how to obtain the state representation from an input-output representation of a single-variable
system (a single input and a single output). As we noticed in the section 3.2.3, a linear system admits a set of equivalent state
representations. Starting from an input-output representation, there are therefore several methods for obtaining equivalent
state representations, each with a particular form. In this paragraph we concentrate on obtaining two forms which will be
useful later.
To explain each of these forms, consider a linear system of order 3 described equivalently by the following differential equation

d3y(t)
dt + a2

d2y(t)
dt + a1

dy(t)
dt + a0y(t) = b2

d2u(t)
dt + b1

du(t)
dt + b0u(t) , (3.9)

or the following transfer function

H(s) = b2s
2+b1s+b0

s3+a2s2+a1s+a0
, (3.10)

with
Y (s) = H(s) · U(s) . (3.11)

Controllable canonical form

From the transfer function given by (3.10), we can write the equation (3.11) in the form of the system of equations
X(s) = 1

s3 + a2s
2 + a1s+ a0

U(s)

Y (s) =
(
b2s

2 + b1s+ b0
)
X(s)

or even {
s3X(s) + a2s

2X(s) + a1sX(s) + a0X(s) = U(s)
Y (s) = b2s

2X(s) + b1sX(s) + b0X(s)

The objective is then to introduce additional variables so as to obtain a system of equations involving polynomials in s of
degrees at most equal to 1. To do this, let X1(s) = X(s), X2(s) = sX1(s), X3(s) = sX2(s), and we obtain

X2(s) = sX1(s)
X3(s) = sX2(s)
sX3(s) + a2sX2(s) + a1sX1(s) + a0X1(s) = U(s)
Y (s) = b2sX2(s) + b1sX1(s) + b0X1(s)

or even 
X2(s) = sX1(s)
X3(s) = sX2(s)
sX3(s) = −a2X3(s)− a1X2(s)− a0X1(s) + U(s)
Y (s) = b2X3(s) + b1X2(s) + b0X1(s)

.

This system of equations can be written in the following matrix form

sX1(s)
sX2(s)
sX3(s)

 =

 0 1 0
0 0 1
−a0 −a1 −a2

 ·
X1(s)
X2(s)
X3(s)

+

0
0
1

 · U(s)

Y (s) =
(
b0 b1 b2

)
·

X1(s)
X2(s)
X3(s)


.

The inverse Laplace transform of the equations leads us to the so-called controllable canonical form of the state representation.

Namely, by posing x(t) =
(
x1(t) x2(t) x3(t)

)>
,

ẋ(t) =

 0 1 0
0 0 1
−a0 −a1 −a2

x(t) +

 0
0
1

u(t)

y(t) =
(
b0 b1 b2

)
x(t)

. (3.12)
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Observable canonical form

From the transfer function given by (3.10), we can write the equation (3.11) in the form

s3Y (s) + a2s
2Y (s) + a1sY (s) + a0Y (s) = b2s

2U(s) + b1sU(s) + b0U(s)

Dividing each member by s3 and isolating Y (s), we obtain

Y (s) = −a2

s
Y (s)− a1

s2
Y (s)− a0

s3
Y (s) +

b2
s
U(s) +

b1
s2
U(s) +

b0
s3
U(s) ,

i.e.

Y (s) =
1

s

[
(b2U(s)− a2Y (s)) +

1

s

[
(b1U(s)− a1Y (s)) +

1

s
(b0U(s)− a0Y (s))

]]
.

Let’s put
X3(s) = Y (s)
X1(s) = 1

s (b0U(s)− a0Y (s))
= 1

s (b0U(s)− a0X3(s))
X2(s) = 1

s (b1U(s)− a1Y (s) +X1(s))
= 1

s ((b1U(s)− a1X3(s) +X1(s))

The above equation can then be written as the following system of equations
X1(s) = 1

s (b0U(s)− a0X3(s))
X2(s) = 1

s ((b1U(s)− a1X3(s)) +X1(s))
X3(s) = 1

s ((b2U(s)− a2X3(s)) +X2(s))
Y (s) = X3(s)

,

i.e. 
sX1(s) = b0U(s)− a0X3(s)
sX2(s) = b1U(s)− a1X3(s) +X1(s)
sX3(s) = b2U(s)− a2X3(s) +X2(s)
Y (s) = X3(p)

.

In matrix form, we obtain 

sX1(s)
sX2(s)
sX3(s)

 =

0 0 −a0

1 0 −a1

0 1 −a2

 ·
X1(s)
X2(s)
X3(s)

+

b0b1
b2

 · U(s)

Y (s) =
(
0 0 1

)
·

X1(s)
X2(s)
X3(s)


.

The inverse Laplace transform of the equations leads us to the so-called observable canonical form of the state representation.

Namely, by posing x(t) =
(
x1(t) x2(t) x3(t)

)>
,

ẋ(t) =

0 0 −a0

1 0 −a1

0 1 −a2

x(t) +

 b0
b1
b2

u(t)

y(t) =
(
0 0 1

)
x(t)

. (3.13)

3.3.3 Simulation from the state representation

In this paragraph, we will present Euler’s method for performing a computer simulation of a system described by its equations
of state (3.5). This method is rather rough but simple to understand and satisfactory for describing the behaviour of most
systems.
Let dt be a number very small compared to the time constants of the system and which corresponds to the sampling period
of the method. The evolution equation of (3.5) can be approximated 6 by

x(t+dt)−x(t)
dt ' Ax(t) +Bu(t) (3.14)

6This approximation can be interpreted as a Taylor expansion to order 1.
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or even
x(t+ dt) ' x(t) +Ax(t) · dt+Bu(t) · dt (3.15)

The following simulation algorithm is derived:

x:=x0; t:=0; dt:=0.01;

repeat

transmit (enter or assign) the value of u as input to the computer;

y:=Cx+Du;

exit (display or store) y;

x:=x+A.x.dt+B.u.dt;

wait for an interruption of the sampler;

t=t+dt;

indefinitely

The sampler produces a periodic interrupt every dt seconds. Thus, if the computer is fast enough, the simulation runs at
the same speed as the evolution of our physical system. We will then speak about real time simulation .
In some circumstances, we are interested in obtaining the result of the simulation as quickly as possible (for example, to
predict how a system will behave in the future). This is known as ’time-delayed’ simulation. In this case, it is not necessary
to slow down the computer to synchronise it with our physical time, i.e. we omit the line waiting for an interrupt in the
algorithm presented above.

3.3.4 Solution of the state equations

In this section, we focus on calculating the solution to the equations of state in analytical form (3.5).

Theorem 2 (Solution of the state equations) Let x(t0) be the state at the initial time t0. For a continuous-time linear
system represented by (3.5), the state at time t is given by

x(t) = eA(t−t0)x(t0) +

t∫
t0

eA(t−τ)Bu(τ)dτ , (3.16)

and the output is expressed as

y(t) = CeA(t−t0)x(t0) +

t∫
t0

CeA(t−τ)Bu(τ)dτ +Du(t) . (3.17)

Equation (3.16) provides the state of the system for any t ≥ t0 from the initial state x(t0), and the input u(t) applied on the
interval [t0, t].

• Function CeA(t−t0)x(t0) is called free homogeneous solution (or transitory).

• Function
t∫
t0

CeA(t−τ)Bu(τ)dτ +Du(t) is called forced solution.

The reader is referred to the appendices of this document for a brief review of the properties of matrix exponentials, as well
as for methods of calculation.

3.3.5 Stability

Definition 1 (Stability) A linear system is (asymptotically) stable if when the input cancels, its state tends to 0 when t
tends to infinity.

Suppose a non-zero input is applied to a system represented by (3.5) from the initial time t0 to a time t1. The state at
time t1 can be evaluated from (3.16) :

x(t1) = eA(t1−t0)x(t0) +

t1∫
t0

eA(t1−τ)Bu(τ)dτ .
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If the input is zero after t1, the state for t ≥ t1 is always written from (3.16) :

x(t) = eA(t−t1)x(t1) +
t∫
t1

eA(t−τ)Bu(τ)dτ

= eA(t−t1)x(t1) ,

which cancels when t tends to infinity if
lim
t→∞

eA(t−t1) = 0 .

A definition equivalent to the definition 1 is therefore stated as follows.

Definition 2 A linear system is (asymptotically) stable if after a sufficiently long time the state no longer depends on the
initial conditions (whatever they may be).

By choosing arbitrarily t1 = 0, to characterize the stability we will look for the conditions so that

lim
t→∞

eAt = 0 .

Theorem 3 (Stability criterion) A linear system is stable if, and only if, all the eigenvalues of its evolution matrix have
strictly negative real parts.

The reader is referred to the appendices of this document for a brief review of the eigenvalues of a matrix.

Definition 3 (Characteristic polynomial) The characteristic polynomial P (s) of a linear system represented by (3.5) is
defined as the characteristic polynomial of the evolution matrix A, i.e.

P (s) = |sI−A| (3.18)

The roots of P (s) are the eigenvalues of A.

In the mono-variable case, one can notice, referring to the paragraph 3.3.1, that P (s) constitutes the denominator of the
transfer function of the system. The roots of P (s) then correspond to the poles of the transfer function.

Corollary 1 (Stability criterion) A linear system is stable if, and only if, all roots of its characteristic polynomial have
strictly negative real parts.

Example 9 Consider again the example of the harbour crane described in the example 1 and for which a state representation
was given in the example 6, i.e.  ẋ(t) =

(
0 g
− 1
L 0

)
x(t) +

(
0
1
L

)
u(t)

y(t) =
(

1 0
)
x(t)

.

From this state representation, we can study the stability of the system by calculating the eigenvalues of A which are also the
roots of its characteristic polynomial:

P (s) = |sI−A| =
∣∣∣∣ s −g

1
L s

∣∣∣∣ = s2 +
g

L
.

Its roots are the pure imaginary ±i
√

g
L , and the system is therefore unstable. This conclusion corroborates that of the example

2.

3.3.6 Controllability

There are several equivalent definitions for the notion of the controllability of a linear system. In this course, we retain the
following one.

Definition 4 (Controllability) A linear system represented by the equations (3.5) is said to be controllable if for any pair
of state vectors (x0, x1), we can find a time t1 and a command u(t), t ∈ [t0, t1], such that the system, initialised in x0 at
time t0, reaches the state x1 at time t1.

Note that in this definition, no assumption is made about the amplitude of the signals, and in particular, the u control can
be as energetic as necessary. In practice, it is necessary to take into account the saturations of the actuators (which deliver
the command).
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Theorem 4 (Controllability criterion) A linear system represented by the equations (3.5) is controllable if and only if,

rank

Γcom︷ ︸︸ ︷(
B|AB|A2B| . . . |An−1B

)
= n , (3.19)

where n is the dimension of the evolution matrix A (or, equivalently, the number of state variables). In other words, it is nec-
essary that the Γcom matrix, known as the controllability matrix, obtained by juxtaposing the n matrices B, AB, . . . , An−1B
next to each other, is of rank equal to the dimension of the A matrix.

Example 10 Consider again the example of the harbour crane described in the example 1 with the state representation ẋ(t) =

(
0 g
− 1
L 0

)
x(t) +

(
0
1
L

)
u(t)

y(t) =
(

1 0
)
x(t)

.

We have

Γcom =
(
B AB

)
=

(
0 g

L
1
L 0

)
The determinant of Γcom is non-zero, the rank of Γcom is thus equal to 2 (the dimension of A), and one can conclude that
the system is controllable. This means that starting from any value of the state (the state variables are the velocity of the
mass and the angle θ), we can ”bring” the state to any desired value.

3.3.7 Observability

Definition 5 (Observability) A linear system represented by the equations (3.5) is said to be observable if the knowledge
of y(t) and u(t) for t ∈ R allows us to uniquely determine the state x(t), for all t.

This property is of practical importance when some of the state variables of a system are inaccessible to measurement. If
the system is observable, then this guarantees that there is a way (presented later in this document) to calculate the values
of these state variables from measurements of the output.

Theorem 5 (Observability criterion) A linear system represented by the equations (3.5) is observable if and only if,

rank

Γobs︷ ︸︸ ︷
C
CA

...
CAn−1

 = n , (3.20)

where n is the dimension of the evolution matrix A (or, equivalently, the number of state variables). In other words, it is
necessary that the Γobs matrix, known as the observability matrix, obtained by stacking the n matrices C, CA, . . . , CAn−1

one below the other, is of rank equal to the dimension of the A matrix.

Example 11 Let us consider again the example of the harbour crane. We have

Γobs =

(
C
CA

)
=

(
1 0
0 g

)
,

|Γobs| = g 6= 0 and thus rang(Γobs) = 2 = dim(A). The system is therefore observable. This means that from the knowledge
of the input and output alone, there is a way to calculate the values of the state variables.

3.4 State representation of linear systems in discrete time

In this chapter, we focus on linear systems that can be represented by the equations of state{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(3.21)

where time, denoted k, takes discrete values (typically in Z).
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3.4.1 Solution of the state equations

The following theorem provides the analytical solution to the state equations (3.21).

Theorem 6 (Solution of the state equations) Let x(k0) be the state at the initial time k0. For a discrete-time linear
system represented by (3.21), the state at time k is given by

x(k) = Ak−k0x(k0) +

k−1∑
l=k0

Ak−1−lBu(l) , (3.22)

and the output is expressed as

y(k) = CAk−k0x(k0) +

k−1∑
l=k0

CAk−1−lBu(l) +Du(k) . (3.23)

Equation (3.22)provides the state of the system for any k ≥ k0 from the initial state x(k0), and the input u(k) applied on
the interval [k0, k].

• Function CAk−k0x(k0) is called free homogeneous solution (or transitory).

• Function
k−1∑
l=k0

CAk−1−lBu(l) +Du(k) is called forced solution.

Theorem 6 is easily proven by recurrence.

3.4.2 Stability

Definition 1 applies to discrete time systems (denoting k as time instead of t). Suppose a non-zero input is applied to a
system represented by (3.21) from the initial time k0 to a time k1. The state at time k1 can be evaluated from (3.22) :

x(k1) = Ak1−k0x(k0) +

k1−1∑
l=k0

Ak1−1−lBu(l) .

If the input is zero after k1, the state for k ≥ k1 is always written from (3.22) :

x(k) = Ak−k1x(k1) +
k−1∑
l=k1

Ak−1−lBu(l)

= Ak−k1x(k1) (car u(l) = 0 pour l ≥ k1) ,

which cancels when k tends to infinity if
lim
k→∞

Ak−k1 = 0 .

Definition 2 is therefore also equivalent for stability.
By choosing arbitrarily k1 = 0, to characterize the stability we will look for conditions so that

lim
k→∞

Ak = 0 .

Theorem 7 (Stability criterion) A linear system is stable if, and only if, all the eigenvalues of its evolution matrix are
strictly in the unit disc.

The reader is referred to the appendices of this document for a brief review of the eigenvalues of a matrix.

Definition 6 (Characteristic polynomial) The characteristic polynomial P (z) of a linear system represented by (3.21)
is defined as the characteristic polynomial of the evolution matrix A, i.e.

P (z) = |zI−A| (3.24)

The roots of P (z) are the eigenvalues of A.

Corollary 2 (Stability criterion) A linear system is stable if, and only if, all roots of its characteristic polynomial are
strictly in the unit disc.
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3.4.3 Controllability

The controllability of a linear system in discrete time is defined in the same way as for a system in continuous time (cf.
definition 4 by denoting k the time instead of t.).
The controllability criterion is also the same: we will therefore also apply theorem 4 to characterise the controllability of a
discrete-time system.

3.4.4 Observability

The observability of a linear system in discrete time is defined in the same way as for a system in continuous time (cf.
definition 5 by denoting k the time instead of t.).
The observability criterion is also the same: we will therefore also apply theorem 5 to characterise the observability of a
system in discrete time.

3.4.5 From an input-output representation to a state representation

While continuous-time linear systems can be described by an input-output differential equation, discrete-time systems admit
an input-output relationship in the form of a difference equation. In the single-variable case, we have an equation of the
type:

y(k + n) + an−1y(k + n− 1) + . . .+ a0y(k) = bmu(k +m) + bm−1u(k +m− 1) + . . .+ b0u(k) (3.25)

In this section, we examine how to obtain the state representation from such an input-output representation of a single-
variable system. As we noted in section 3.2.3, a linear system admits a set of equivalent state representations. Starting from
an input-output representation, there are therefore several methods for obtaining equivalent state representations, each with
a particular form. In this paragraph we concentrate on obtaining two forms which will be useful later.

Controllable canonical form

Let us choose a state variable x1(k) such that it checks

x1(k + n) + an−1x1(k + n− 1) + . . .+ a0x1(k) = u(k) (3.26)

Then we pose, 
x2(k) = x1(k + 1)
x3(k) = x2(k + 1)

...
xn(k) = xn−1(k + 1)

We have xn(k + 1) = x1(k + n), and from (3.26), we will check that then

xn(k + 1) = −a0x1(k)− a1x2(k)− . . .− an−1xn(k) + u(k)

Let’s put

x(k) =


x1(k)
x2(k)

...
xn(k)

 .

By writing these equations in matrix form, we get the state representation:
x(k + 1) =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

x(k) +


0
0
...
0
1

u(k)

y(k) =
(
c1 c2 . . . cn

)
x(k) + bnu(k)

. (3.27)

with ci = bi−1 − bnai−1.
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Observable canonical form

Let us choose as state variables 
x1(k) = y(k)− bnu(k)
x2(k) = x1(k + 1) + an−1y(k)− bn−1u(k)

...
xn(k) = xn−1(k + 1) + a1y(k)− b1u(k)

By posing

x(k) =


x1(k)
x2(k)

...
xn(k)

 ,

this leads us to the state representation:
x(k + 1) =


−an−1 1 0 . . . 0
−an−2 0 1 . . . 0

...
...

...
. . .

...
−a1 0 0 . . . 1
−a0 0 0 . . . 0

x(k) +


h1

h2

...
hn−1

hn

u(k)

y(k) =
(
1 0 . . . 0

)
x(k) + bnu(k)

. (3.28)

with hi = bn−i − bnan−i.

3.4.6 Study of continuous systems by of a computer: sampled systems

In this paragraph, we deal with the study of continuous processes via a computer. More precisely, we place ourselves in the
following context :

• We consider processes whose nature implies that their state variables depend continuously on time, and which are
therefore represented by equations of state (3.5). The signals involved in this representation are functions of a continuous
time (typically in R).

• These systems are studied/manipulated (identified, analysed, controlled) by means of a computer: the input u is
generated by the computer, and the measurement of the output y is read by the computer. The signals manipulated
by the computer are in essence in discrete time (typically in Z).

The signal processing chain is shown in Figure 3.3. Let’s detail it from the left to the right :

1. The signal u(k∆) is provided by the computer every ∆ seconds, where ∆ is called the sampling period. It is a binary
number.

2. is translated into an analogue value by a digital-to-analogue converter (D/A).

3. The zero-order hold receives as input the analogue value delivered by the D/A. At its output, it maintains this value
between two sampling times (the signal u(t) has a constant value between two sampling times).

4. The continuous process is driven by this input signal u(t) (in the form of a staircase). Its output response is the
measured continuous signal y(t).

5. This analogue signal is sampled every ∆ seconds (role of the sampler).

6. The sampled signal is converted into a binary value by the A/D converter, which is read by the computer.
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Figure 3.3: Continuous process perceived as a sampled system by the computer

Discretisation of a state equation in continuous time

We limit ourselves to describing the sampled systems at the sampling instants, they are therefore represented as discrete
time systems. In this paragraph, we are therefore interested in the following problem:

• We have a continuous time state representation of the system :{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(3.29)

• The sampled system can be represented at sampling times k∆, which we note k for simplicity, by state equations:{
x(k + 1) = Aechx(k) +Bechu(k)

y(k) = Cechx(k) +Dechu(k)
(3.30)

• We wish to obtain the matrices Aech, Bech, Cech and Dech from the known matrices A, B, C and D.

Starting from (3.29) and knowing the state at the sampling time tk = k∆, it is possible from (3.16) to establish the state at
the next sampling time tk+1 = (k + 1)∆ :

x(tk+1) = eA(tk+1−tk)x(tk) +

tk+1∫
tk

eA(tk+1−τ)Bu(τ)dτ . (3.31)

The zero-order hold maintains u(t) to the constant value u(tk) = u(k∆), noted u(k), during interval [tk, tk+1[, we then have:

u(τ) = u(k) pour τ ∈ [tk, tk+1[ .

Let us carry out the change of variable ν = τ − tk, and as ∆ = tk+1 − tk, the equation (3.31) becomes:

x(k + 1) = eA∆x(k) +

∆∫
0

eA(∆−ν)dνBu(k) . (3.32)

By identification between (3.32) and (3.29), we deduce:

Aech = eA∆ (3.33)

Bech =

∆∫
0

eA(∆−ν)dνB (3.34)

Cech = C (3.35)

Dech = D (3.36)
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To be noted 4

• The matrices Aech and Bech depend on the sampling period ∆, and will therefore have to be re-evaluated each time the
sampling period is modified.

• The computation of Aech requires the evaluation of the exponential of a matrix. Elements for this computation are
provided in the appendices. In practice, one can use the Mupad software for a formal or numerical calculation of Aech.
The software Scilab can also be used for the numerical calculation of Aech.

• The computation of Bech also requires the integration of a matrix expression. The integrand, which involves a matrix
exponential, can first be calculated (notably using Mupad or Scilab). These elements (it is a matrix) can be integrated
one by one still using Mupad or even Scilab.

Choice of the sampling period

For the study of sampled systems, the choice of the sampling period ∆ is crucial because:

• if ∆ is too large, the computer may ”miss” important information about the evolution of the system. Between two
samples, the system may, for example, have oscillated and the computer will not be aware of this behaviour.

• if ∆ is too small, the calculator may be solicited too often. If the system only evolves a little between two successive
samples, the information received does not bring much and the computer processor is then unnecessarily solicited.

The choice of the sampling period ∆ depends directly on the dynamics of the system. The sampling frequency fe (fe = 1
∆ )

must in fact respect Shannon’s theorem, namely:
fe ≥ 2fh

where fh is the highest frequency to be kept in the signal. In practice, the following rule is often applied in Automatic
control :

5fh < fe < 25fh .

On the one hand, we ”oversample” in relation to the limit prescribed by Shannon’s theorem. On the other hand, we try to
limit the sampling frequency so as not to overload the computer. We then have :

First order system Second order system

H(s) = K
1+Ts H(s) = K

1+ 2ξ
ωn
s+ 1

ω2
n
s2

With fh ≈ 1
2πT fh ≈ ωn

2π

We obtain 0.25T < ∆ < 1.25T 0.25 < ∆ωn < 1.25

Example 12 Consider again the example of the harbour crane described in the example 1 with the state representation ẋ(t) =

(
0 g
− 1
L 0

)
x(t) +

(
0
1
L

)
u(t)

y(t) =
(

1 0
)
x(t)

.

It has also been established that this is a second order system whose natural frequency is given by ωn =
√

g
L . The sampling

period ∆ can therefore be chosen in the interval ]0.25
√

L
g , 1.25

√
L
g [.

We calculate the state representation of the system sampled at period ∆ :

• We use the formula (cf. appendices) eAt = L−1
[
(sI−A)−1

]
. Note that we have already computed (sI − A)−1 in the

example 9. We have7 :

eAt = L−1

[(
s

s2+g/L
g

s2+g/L

− 1/L
s2+g/L

s
s2+g/L

)]
=

(
cos
(√

g
L t
) √

gL sin
(√

g
L t
)

− 1√
gL

sin
(√

g
L t
)

cos
(√

g
L t
) )

7As a reminder, the Laplace transform of:

• sin(ωt) is ω
s2+ω2 ;

• cos(ωt) is s
s2+ω2 .

January 2, 2023 35 "Control theory Manuscript_2122".tex



Polytech Angers - 3A SAGI Control theory S. Lahaye

Hence

Aech =

(
cos
(√

g
L∆
) √

gL sin
(√

g
L∆
)

− 1√
gL

sin
(√

g
L∆
)

cos
(√

g
L∆
) )

• We calculate8 Bech =
∫∆

0
eA(∆−ν)dνB :

Bech =

∫ ∆

0

(
cos
(√

g
L∆−

√
g
Lν
) √

gL sin
(√

g
L∆−

√
g
Lν
)

−1/
√
gl sin

(√
g
L∆−

√
g
Lν
)

cos
(√

g
L∆−

√
g
Lν
) )

dνB

=

[(
−
√

g
L sin

(√
g
L∆−

√
g
Lν
)
−L cos

(√
g
L∆−

√
g
Lν
)

1
g cos

(√
g
L∆−

√
g
Lν
)

−
√

g
L sin

(√
g
L∆−

√
g
Lν
) )]∆

0

B

=

(
−1 + cos

(√
g
L∆
)

1√
(gL)

sin
(√

g
L∆
) )

• Cech = C =
(

1 0
)

3.5 State feedback control

In this chapter, we will study the design of controllers for systems represented by the state equations{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(3.37)

in continuous time, or {
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(3.38)

in discrete time. Note that we consider here that the direct matrix D is zero, or that the output is not a direct function of
the input. In practice, this situation is common.

The state feedback control method consists in the elaboration of a control signal u from the state variables xi, initially
assumed to be all measured (their values are permanently accessed). This assumption is not very realistic, but it allows us
to explain the control principle directly and simply. We will see in the next chapter that if some state variables are not
accessible, then, under the assumption of observability, it is possible to deduce them from the output using a state observer
or estimator.
We therefore start with the case where all the state variables are accessible, and we then have the control structure shown
in Figure 3.4 (we present the case in discrete time, we have the analogue in continuous time) :

• The variable e(k) is the external setpoint (reference input) sent to the system.

• The control law applied to the system is given by:

u(k) = e(k)− L · x(k) .

It takes into account the external set point e(k) and the behaviour of the system via L · x(k).

• The matrix L is the regulation matrix that we will try to calculate.

8As a reminder, the derivative of:

• 1
ω

sin(ωt+ φ) is cos(ωt+ φ) ;

• − 1
ω

cos(ωt+ φ) is sin(ωt+ φ).
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Figure 3.4: Structure of a state feedback control

3.5.1 Pole placement control

In continuous time

With state feedback, the control law applied to the system is given by:

u(t) = e(t)− L · x(t) .

The evolution equation of the looped system is then written

ẋ(t) = Ax(t) +B (e(t)− Lx(t))
= (A−BL)x(t) +Be(t)

(3.39)

The principle of pole placement adopted here is to choose the control matrix L so as to impose the poles of the looped
system. In other words, the dynamics of the system are forced to ensure a chosen stability and speed.

Fixing the poles of the looped system is equivalent to imposing the characteristic polynomial of the system. Let Pdes(s)
be the desired characteristic polynomial for the looped system (we choose it of degree n), we have to solve the polynomial
equation

|sI−A+BL| = Pdes(s) (3.40)

known as pole placement.
This equation can be solved directly in Scilab using the function ppol().
For a more formal answer, we restrict ourselves to the case where the system has a single input9. Equation (3.40) can be
translated into n scalar equations with n unknowns, and the problem then has a unique solution. Recall that two polynomials
of degree n

sn + γn−1s
n−1 + . . .+ γ0

and

sn + δn−1s
n−1 + . . .+ δ0

are equal if, and only if, their coefficients are all equal, that is, if

γ0 = δ0, γ1 = δ1, . . . , γn−1 = δn−1.

9We refer the reader to the works cited in the bibliography for the (more complex) multi-input case.
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The solution of the problem is easy when the state representation of the system is in the canonical controllable form10 (cf.
§ 3.2.3), i.e. when A and B have the following shapes

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 . . . 0 1
−a0 −a1 . . . . . . −an−1

 , B =


0
0
...
0
1

 .

With

L =
(
l0 l1 l2 . . . ln−1

)
,

it is easy to obtain

|sI−A+BL| = sn + (an−1 + ln−1)sn−1 + . . .+ (a1 + l1)s+ (a0 + l0) .

The a0, a1, . . ., an−1 are known coefficients of the system model. It is then sufficient to identify the l0, l1, . . ., ln−1 so
that

|sI−A+BL| = Pdes(s) ,

that is

sn + (an−1 + ln−1)sn−1 + . . .+ (a1 + l1)s+ (a0 + l0) = sn + αn−1s
n−1 + . . .+ α1s+ α0 ,

where α0, α1, . . ., αn−1 are the chosen coefficients of Pdes(s). These reflect the poles chosen for the looped system in order to
ensure its desired performance. In other words, the control will allow the corrected system to have Pdes(s) as the denominator
of its transfer function.

• In the case of a first order system, the denominator of the transfer function is written 1 + Ts or 1/T + s, and therefore
the choice of α0 in the polynomial Pdes(s) will make it possible to fix the desired value for the time constant T (which
expresses the ”rapidity” of the system)

• In the case of a second order system, the denominator of the transfer function is written 1+ 2ξ
ωn
s+ 1

ω2
n
s2 or ω2

n+2ξωns+s
2,

and thus the choice of α0 and α1 in the polynomial Pdes(s) will allow to fix the desired values for the natural frequency
ωn and the damping ratio ξ.
For the control to be physically feasible, the coefficients l0 and l1 must be real numbers. We must then choose α0 and
α1 such that they are real numbers (the roots of Pdes(s) can be conjugated complexes).
To ensure stability, ξ must be strictly positive (which amounts to choosing roots with a strictly negative real part for
Pdes(s)). If we want the looped system to behave like a damped second order resonant system (0 < ξ < 1), then the
value of ξ conditions the amplitude of the overshoot.
For a fixed value of ξ, the choice of the natural frequency will make it possible to adjust the ”speed” of the system (for
example to impose the value of the response time at 5%).

• For systems of orders greater than or equal to 3, we can put Pdes(s) in the form of a factorisation of polynomials of
orders 1 and 2, and then reason for each polynomial as above.

Example 13 Consider again the example of the harbour crane described in the example 1 with the state representation ẋ(t) =

(
0 g
− 1
L 0

)
x(t) +

(
0
1
L

)
u(t)

y(t) =
(

1 0
)
x(t)

.

It was also established that this was a second-order system whose damping ratio is zero and whose natural frequency is given
by ωn =

√
g
L . The example 9 has shown that this system is unstable.

We will apply a state feedback control in order to impose the poles of the corrected system. More precisely, we want the
feedback-corrected system to have the characteristic polynomial :

Pdes(s) = (s+ 2)2

This choice can be justified by the following explanations.

10Note that if the system is controllable, then it is always possible to find a similar state representation (see works cited in bibliography).
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a) The roots of the characteristic polynomial of the corrected system (in this case the −2 double root) will then all have a
strictly negative real part, and the system will therefore be stabilised.

b) More precisely, this amounts to imposing s2 + 4s + 4, or 1
4s

2 + s + 1 as the denominator of the transfer function. By
identification, this amounts to imposing :

• ξ = 1 the corrected system will be free of overshoot.

• ωn = 2 and the rise time for a step input can be predicted using tm = 1

ωn
√

1−ξ2
(π − arccos ξ).

Let us determine the control matrix L allowing to obtain Pdes(s) as the characteristic polynomial of the corrected system.
We want to solve the pole placement problem :

|sI−A+BL| = Pdes(s).

sI−A+BL =

(
s −g

1+l1
L s+ l2

L

)
We obtain |sI−A+BL| = s2 + s l2L + g+l1g

L , and by identification we deduce{
l1 = 4L

g − 1

l2 = 4L

On the figure 3.5, we represented the step response of the system (trolley-cables-container assembly) corrected by this feedback
(we took L

g = 0, 125, L = 1, 25).

Figure 3.5: Step response of the system (trolley-cable-container assembly) corrected by a state feedback

In discrete time

The approach is the same as in continuous time. With state feedback, the control law applied to the system is given by:

u(k) = e(k)− L · x(k) .

The evolution equation of the looped system is then written

x(k + 1) = Ax(k) +B (e(k)− Lx(k))
= (A−BL)x(k) +Be(k)

(3.41)

The principle of pole placement adopted here is to choose the control matrix L so as to impose the poles of the looped system.
This problem is equivalent to imposing the characteristic polynomial of the system. Let Pdes(z) be the desired characteristic
polynomial for the looped system (we choose it of degree n), we have to solve the polynomial equation

|zI−A+BL| = Pdes(z) (3.42)
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said to be of pole placement.
This equation can be solved directly in Scilab using the function ppol().
If we restrict ourselves to the case where the system has a single input11, equation (3.42) can be translated into n scalar
equations with n unknowns. There is then a unique solution, and, exactly as in continuous time, it can be made explicit
directly if the state representation of the system is in the canonical controllable form (cf. § 3.4.5).

The choice of the coefficients of Pdes(z) will allow to fix the desired behaviour of the looped system.

• In the case of a first order system, Pdes(z) is of the form

Pdes(z) = z + α0

where α0 = −e−∆
T and thus allows the desired value for the time constant T (which reflects the ”speed” of the system)

to be set.

• In the case of a second order system, Pdes(z) is of the form

Pdes(z) = z2 + α1z + α0

where α1 = −2e−ξωn∆ cos(ωn
√

1− ξ2∆ and α0 = e−2ξωn∆ for a chosen damping ratio ξ strictly less than 1.

3.5.2 Static regime of the looped system

In this section, we are interested in the behaviour of the system in steady state, i.e., when its state does not evolve any more,
or when a constant reference input e is considered and the time (t or k) tends towards infinity. We will first deduce an
expression for the static gain of the looped system. In a second step, we will be able to propose a control system that slaves
the output to a non-zero value.

In continuous time

Let us denote
e = lim

t→∞
e(t),

x = lim
t→∞

x(t),

y = lim
t→∞

y(t).

The evolution equation of the closed system (3.39) and the static output equation can be written :{
0 = (A−BL)x+Be
y = Cx

(3.43)

In the static regime, we have ẋ(t) = 0. The first equation gives

x = −(A−BL)−1Be.

By transferring this expression to the output equation, the result is

y = −C(A−BL)−1Be. (3.44)

In discrete time

The evolution equation of the discrete time looped system is written as (cf. §3.5.1) :

x(k + 1) = (A−BL)x(k) +Be(k)

A steady state is reached as soon as for k > K, K corresponding to the instant of the beginning of the static regime, we
have x(k + 1) = x(k). This gives

x(k) = (A−BL)x(k) +Be(k),

or even
x(k) = (I−A+BL)−1Be(k).

Transferring this expression to the output equation, and noting y and e as the signals y(k) and u(k) (constant in steady
state), we obtain

y = C(I−A+BL)−1Be. (3.45)
11We refer the reader to the works cited in the bibliography for the (more complex) multi-input case.
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Achieving a unitary gain

From equations (3.44) and (3.45), the value of the static gain can be directly deduced
y

e
, i.e. for the looped system:

−C(A−BL)−1B in continuous time,
C(I−A+BL)−1B in discrete time.

In order to ensure a unitary gain between the reference input e and the output y, a gain Kre of value equal to the inverse
of the latter can be added to the control structure. This is placed upstream of the state feedback as shown in figure 3.6 in
discrete time.
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Figure 3.6: A gain is added upstream of the state feedback

Example 14 Consider again the example of the harbour crane described in the example 1 with the state representation ẋ(t) =

(
0 g
− 1
L 0

)
x(t) +

(
0
1
L

)
u(t)

y(t) =
(

1 0
)
x(t)

.

In example 13, we have determined the control matrix L allowing to obtain Pdes(s) = s2 + 4s + 4 as the characteristic
polynomial of the corrected system, namely:

L =
(

4L
g − 1 4L

)
The gain (in static regime) of the looped system is −C(A−BL)−1B. We have

A−BL =

(
0 g
− 4
g −4

)
, d’où (A−BL)−1 =

(
−1 − g4
1
g 0

)
and

−C(A−BL)−1B =
g

4L
.

The gain to be added to obtain a unit gain for the looped system is therefore Kre = 1
−C(A−BL)−1B = 4L

g .

Controlling the output to a non-zero constant value

In the case where the system is not subject to any external disturbance, the objective of a control system may be to bring
the system (and in particular its outputs) to equilibrium points (desired output values). If the objective of the control is in
particular to bring the output to a constant value ys, the result obtained for the steady state directly provides the reference
input to be applied to the system input. Indeed:
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• in continuous time, we want y = lim
t→∞

y(t) = ys, and we seek for e(t) = es suitable. Equation (3.44) allows us to

establish directly the expression of es, namely

es = [−C(A−BL)−1B]−1ys,

• in discrete time, we obtain from (3.45)

es = [C(I−A+BL)−1B]−1ys.

3.5.3 Adding an integral effect

In conventional control, the cancellation of the static error in response to a step is carried out using an integral corrector.
It is possible to implement a similar correction in state space. We consider the system x(t) = Ax(t) + Bu(t) + p where p is
an unknown and constant disturbance vector, supposed to represent an external disturbance which could not be taken into
account in the modelling. A feedback controller with integral effect is of the form

u(t) = Li

∫ t

0

(e(t)− y(t))dt︸ ︷︷ ︸
integral effect

−
state feedback︷ ︸︸ ︷
Lx(t) ,

assuming that the number of output(s) is equal to the number of input(s) (y and e have the same dimensions). The closed
loop system can therefore be written as :  ẋ(t) = Ax(t) +Bu(t) + p

ż(t) = e(t)− y(t)
u(t) = Liz(t)− Lx(t)

.

The state equations of the looped system can also be written as{
ẋ(t) = (A−BL)x(t) +BLiz(t) + p
ż(t) = e(t)− y(t)

or, in matrix form: (
ẋ(t)
ż(t)

)
=

(
A−BL BLi
−C 0

)(
x(t)
z(t)

)
+

(
p

e(t)

)
.

Since (
A−BL BLi
−C 0

)
=

(
A 0
−C 0

)
−
(
B
0

)(
L −Li

)
,

the evolution matrix of the looped system is still of the form A′ − B′L′ (cf. eq. (3.39)), and the choice of L and Li is then
also made by poles placement (Scilab’s function ppol() can be used).

3.6 State observer

In the previous chapter, we assumed that all the state variables of the process were measured to compute the control.
Most of the time, either because of the physical impossibility of introducing a sensor or because of cost issues, not all states
can be measured.
We will see how one can, from measurements of the input and output of the process, estimate the complete state vector x,
noted then x̂. The subsystem which carries out this estimation is called state observer.

For the control by state feedback, we place ourselves in the context schematised in the figure 3.7. It is the estimated state
x̂ which is transmitted to the control matrix L to elaborate the state feedback, and the control law to apply is

u = e− Lx̂.
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Figure 3.7: Structure of a state feedback control with a state observer

3.6.1 Principle of the state observer

Consider a process described by the matrices A, B and C of its state representation.
If the process is observable, it is possible from the input and output measurements to estimate the state of the system (cf.
§3.3.7). The principle of the estimation is then schematized in the figure 3.8.
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Figure 3.8: Principle of the state observer

The device integrates a simulator of our system. The ε error between the output of the simulator ŷ and the output of the
y system allows us to correct, by means of a correction matrix Lobs, the evolution of the estimated state x̂. The corrected
simulator is called observer. Its role is to give us a good estimate of the state vector x of the system to be transmitted to
the matrix L of the state feedback regulation.
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3.6.2 Synthesis of the matrix Lobs

In continuous time
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Figure 3.9:

In order to calculate Lobs, let us extract from the figure 3.9 the subsystem with input x(t) and output εx(t) = x̂(t) − x(t).
This output is not measurable because it depends on x but we abstract it for the purpose of the following developments. It
will only be used to calculate Lobs and will not be used by the controller.

We have {
ẋ(t) = Ax(t) +Bu(t)

d
dt (x̂(t)) = Ax̂(t) +Bu(t)− Lobs(Cx̂(t)− Cx(t))

.

hence
ε̇x(t) = d

dt (x̂(t)− x(t)) = Ax̂(t) +Bu(t)− Lobs(Cx̂(t)− Cx(t))−Ax(t)−Bu(t)
= A(x̂(t)− x(t))− LobsC(x̂(t)− x(t))

,

or even {
ẋ(t) = Ax(t) +Bu(t)
ε̇x(t) = Aεx(t)− LobsCεx(t)

.

By putting into matrix form, we arrive at the following state representation for the system with input x(t) and output
εx(t) = x̂(t)− x(t): 

(
ẋ(t)
ε̇x(t)

)
=

(
A 0
0 A− LobsC

)(
x(t)
εx(t)

)
+

(
B
0

)
u(t)

εx(t) =
(
0 I

)( x(t)
εx(t)

) . (3.46)

The poles of this system correspond to the eigenvalues of A and A− LobsC.
The command u(t) does not intervene in the evolution of the sub-state vector εx(t) (governed by ε̇x(t) = (A−LobsC)εx(t)).
The estimation error εx(t) tends to zero if all eigenvalues of A−LobsC have strictly negative real parts (see §3.3.5). Imposing
the dynamics of this error (in particular imposing the speed of convergence to zero) amounts to solving

|sI−A+ LobsC| = Pobs(s),

where Pobs(s) is chosen. Since the determinant of a matrix is equal to that of its transpose, this equation is equivalent to

|sI−A> + C>L>obs| = Pobs(s), (3.47)

and we obtain an equation of the pole placement type (cf. equation (3.40)). The same method as described in paragraph
3.5.1 is therefore applied to obtain L>obs and therefore Lobs (e.g. using ”ppol()” in Scilab).
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In discrete time

The approach is identical to that for continuous time. For the input subsystem u(k) and the output subsystem varepsilonx(k),
we can verify that we end up with the following state representation

(
x(k + 1)
εx(k + 1)

)
=

(
A 0
0 A− LobsC

)(
x(k)
εx(k)

)
+

(
B
0

)
u(k)

εx(k) =
(
0 I

)( x(k)
εx(k)

) . (3.48)

It can be stated that the reconstruction error εx(k) tends to zero if all eigenvalues of A − LobsC are all strictly in the unit
circle. Here again, we apply a pole placement technique to fix the coefficients of Lobs.

3.6.3 Separation principle

It can be shown that the poles of the closed-loop system with a state observer are, on the one hand, the poles chosen for
the design of the controller, and on the other hand, the poles chosen for the state observer. This independence allows us to
determine separately the feedback correction (L) and the estimation (Lobs).
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Brief reminders of linear algebra

Consider a square matrix

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann


Calculation of the determinant

If A is of dimension 2× 2

A =

(
a11 a12

a21 a22

)
We have

|A| = a11a22 − a21a12

For higher dimensions, the following properties can be applied

• a determinant is not modified when a linear combination of the other lines is added to a line,

• when two lines of a determinant are exchanged, the determinant is changed into its opposite,

to rewrite the determinant in the form:

|A| =

∣∣∣∣∣∣∣∣∣
a′11 a′12 . . . a′1n
0 a′22 . . . a′2n
...

...
. . .

...
0 a′n2 . . . a′nn

∣∣∣∣∣∣∣∣∣
We then have

|A| = a′11 ·

∣∣∣∣∣∣∣
a′22 . . . a′2n
...

. . .
...

a′n2 . . . a′nn

∣∣∣∣∣∣∣
More generally, we can apply an expansion along the j-column of A as follows:

|A| =
n∑
i=1

aijCofij

with
Cofij = (−1)i+jMij (3.49)

where Mij represents the determinant of the matrix resulting from the deletion of row i and column j in the matrix A, i.e.

M11 =

∣∣∣∣∣∣∣
a22 . . . a2n

...
. . .

...
an2 . . . ann

∣∣∣∣∣∣∣ , . . .M1n =

∣∣∣∣∣∣∣
a21 . . . a2n−1

...
. . .

...
an1 . . . ann−1

∣∣∣∣∣∣∣
Mn1 =

∣∣∣∣∣∣∣
a12 . . . a1n

...
. . .

...
an−12 . . . an−1n−1

∣∣∣∣∣∣∣ . . .Mnn =

∣∣∣∣∣∣∣
a11 . . . a1n−1

...
. . .

...
an−11 . . . an−1n−1

∣∣∣∣∣∣∣
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Calculation of the inverse matrix

• The matrix A is invertible if and only if, |A| 6= 0.

• If A is invertible, then

A−1 =
1

|A|
(ComA)> , avec (ComA)ij = Cofij (cf. equ. (3.49)).

Eigenvalues of a matrix

• We call eigenvalue and associated eigenvector of a square matrix A, a scalar λ and a non zero vector v such that:

A · v = λv .

• The eigenvalues of a square matrix A are the roots of the equation:

|λI−A| = 0 ,

called characteristic equation of A ; |λI−A| is the characteristic polynomial of A.

• If A and D are two matrices such that P−1AP = D (then AP = PD) and if D is a diagonal matrix, then multiplying
P on the right by D is the same as multiplying the columns of P by the diagonal coefficients of D. Let P.i be the ith
column of the matrix P and Dii the ith diagonal coefficient of D. For all i = 1, . . . , n, we have:

AP.i = DiiP.i.

P.i is therefore an eigenvector of A associated with the eigenvalue Dii.

Matrix exponentials

Consider square matrices M and N of dimension n. We note 0 and I the null and identity matrices of dimension n.

• The exponential eM is of the same dimension as the matrix M .

• The exponential of a matrix follows the same rules of calculation as the exponential function, in particular:

e0 = I (3.50)

eM · eN = eM+N (3.51)

d

dt

(
eMt

)
= MeMt (3.52)

• The exponential of a matrix can be calculated from its integer series expansion, namely:

eM = I +M +
1

2!
M2 +

1

3!
M3 + . . . =

∞∑
i=0

1

i!
M i . (3.53)

When the powers M i become zero or negligible, we can evaluate the expression (3.53) by a finite summation of terms.
The calculation is simplified if the matrix M is diagonal, because then only the successive powers of the diagonal
elements remain.

• The exponential of a matrix can also be calculated from an inverse Laplace transformation, more precisely:

eMt = L−1
[
(sI−M)−1

]
. (3.54)

This method requires the calculation of the inverse of a matrix (Mupad and Scilab software can be used) and its inverse
Laplace transformation. Its advantage is to provide an analytical expression.
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Rank of a matrix and solving a linear system

• A square matrix is said to be of full rank if its determinant is non-zero.

The rank of a matrix R, noted rank(R), is the maximum size of the square matrices of full rank extracted from R.

• Consider the system
Ax = b

with A a square matrix and b a column vector with as many rows as A.
If A is of full rank, then the system has a unique solution given by x = A−1b.

• Consider the system
Rx = b

with R a rectangular matrix of p rows and q columns, and b a column vector of p rows.

Case p < q : if R is of rank p, then the system has infinitely many solutions.

Case p > q : if R is of rank p, then the system has at most one solution. If the latter exists, it is given by x = (R>R)−1R>b.
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Reminders on second order systems12

In continuous time

Figure 3.10: Second order system in continuous time: location of poles in the complex plane

12D’après [Rivoire et Ferrier]
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Figure 3.11: Second order system in continuous time: influence of the pole position
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In discrete time

Figure 3.12: Second order system in discrete time: location of poles in the complex plane
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