MATHEMATICAL MODELS IN RELIABILITY

- 1. Quantitative reliability measures
 - 1. Modelling the system state and the failure time
 - 2. Reliability measures

2. Failure models

- 1. Discrete models
 - 1. Binomial and Geometric distributions
 - 2. Homogenous Poisson Process
- 2. Continuous models
 - 1. Exponential distribution
 - 2. Weibull distribution
 - 3. Lognormal distribution
- 3. Mixture models

1. Quantitative reliability measures

Modelling the system state and the failure time

State variable: $X(t) = \begin{cases} 1 & \text{if the system is on at } t \\ 0 & \text{if the system is out at } t \end{cases}$

Time to failure (life time, operating time): *time elapsing from when the system is put on operation until it fails its first time*

- Random variable: discrete or continuous
 - A submarine mission time
 - Number of washing cycles of a washing machine
 - Number of kilometers for a tyre
 - Number of flights for a landing system of a plane
 - Operating time for electronical devices
 - Number of shocks for a watch

If no particular mention, the time to failure will be considered as continuous

1. Quantitative reliability measures

Reliability measures

Drawn the failure rate function over the life cycle

1. Quantitative reliability measures

- Is the function $1/(0.2t + 1)^2$ can be a reliability function?
- From its definition, find the different expressions of the MTTF
- What can represent the **Median Life** of a system?
- What is a **quantile** of the life distribution?
- What is the **Mode** of a distribution?
- How do you define the **Mean Residual Life** of a system?
 - Define the conditional survivor/reliability function
 - Write the MRL as a function of the reliability function

A park of *n* identical systems is inspected at time *t*, given that all of the systems are new at t = 0.

Master ISMP - Castanier

What are the parameters for the evaluation of the probability that we can observe k < n failed systems ?

What are the expected number of failed systems and the associated variance?

2. Failure models

Let assume a non-repairable system which is new at t = 0. At each of the failures, the system is replaced by a new identical one. Let consider a negligible replacement time.

The objective is then to estimated the number of replacements in a time interval.

Let λ be the *intensity* of the counting stochastic process $\{N(t), t \ge 0\}$ or the *frequency* of the failure event.

- 1. Find the probability of the number of replacements in (0, t) is n
- 2. Find the probability of the number of replacements in (t, t + s) is *n* given N(t) = 0 for any *t*
- 3. Give the expected number of replacements in (0, t) and the associated variance

2. Failure models

Definition:

Let consider an event *A*. Let assume that:

- 1. The event *A* may occur at any time in the interval, and the probability of *A* occuring in the interval $(t, t + \Delta t)$ is independent of *t* and may be written as $\lambda \cdot \Delta t + o(\Delta t)$ where $\lambda > 0$
- 2. The probability of more than one event in $(t, t + \Delta t)$ is $o(\Delta t)$.
- 3. Let $(t_{11}, t_{12}), (t_{21}, t_{22}), ...$ be any sequence of disjoint intervals. Then the events « *A* occurs in (t_{j1}, t_{j2}) », j = 1, 2, ... are independent.

Then the stochastic process $\{N(t), t \ge 0\}$ is an Homogeneous Poisson Process (HPP) with rate λ

Discuss on the probability that N(t) = 0 for any given t

Let assume now that the failure rate function of a life time T is non linear, $z(t) = at^b$.

Write the reliability function of *T* Discuss the model when b = 0

Definition

The Weibull failure model is defined when the failure time *T* is Weibull-distributed, i.e.

$$F_T(t) = 1 - e^{-\left(\frac{t}{\eta}\right)^{\beta}} \text{ for } t > 0$$

Write the reliability function, the pdf, the failure rate function, the MTTF and the MRL(t)

Discuss the monotonicity and plot the failure rate when β varies

2. Failure models Mixture models

Definition

A mixture model is when the sample comes from several distributions.

Examples:

- The analysis of multi-failure modes
- The mix of non-identical systems (sub-population)

Exercice:

Let consider a device with 2 independent failure modes. Each of the failure times are exponentially distributed with their respective failure rates λ_1 and λ_2 . Define the system failure time and write the system reliability function

